HOME
TheInfoList



Rail transport (also known as train transport) is a means of transferring passengers and goods on wheeled
vehicle A vehicle (from la|vehiculum) is a machine that transports people or cargo. Vehicles include wagons, bicycles, motor vehicles (motorcycles, cars, trucks, buses), railed vehicles (trains, trams), watercraft (ships, boats), amphibious vehicles ( ...
s running on rails, which are located on
tracks Track or Tracks may refer to: Routes or imprints * Ancient trackway, any track or trail whose origin is lost in antiquity * Animal track, imprints left on surfaces that an animal walks across * Desire path, a line worn by people taking the shortes ...
. In contrast to
road transport Road transport or road transportation is a type of transport by using roads. Transport on roads can be roughly grouped into the transportation of goods and transportation of people. In many countries licensing requirements and safety regulations ...
, where the vehicles run on a prepared flat surface, rail vehicles (
rolling stock The term rolling stock in the rail transport industry refers to railway vehicles, including both powered and unpowered vehicles, for example locomotives, railroad cars, coaches, private railroad cars and wagons. A connected series of railway vehi ...

rolling stock
) are directionally guided by the tracks on which they run. Tracks usually consist of
steel Steel is an alloy of iron with typically a few tenths of a percent of carbon to improve its strength and fracture resistance compared to iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resis ...

steel
rails, installed on
sleepers ''Sleepers'' is a 1996 American legal crime drama film written, produced, and directed by Barry Levinson, and based on Lorenzo Carcaterra's 1995 novel of the same name. The film stars Kevin Bacon, Jason Patric, Brad Pitt, Robert De Niro, Dustin Hof ...

sleepers
(ties) set in
ballast Ballast is material that is used to provide stability to a vehicle or structure. Ballast, other than cargo, may be placed in a vehicle, often a ship or the gondola of a balloon or airship, to provide stability. A compartment within a boat, ship, s ...

ballast
, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as "slab track", in which the rails are fastened to a concrete foundation resting on a prepared subsurface. passing
Sijiaoting railway station
Sijiaoting railway station
in
Ruifang District Ruifang District () is a suburban district in eastern New Taipei City, Taiwan. History During Japanese rule, Ruifang was called , and was administered as part of of Taihoku Prefecture. Mining was an important industry in Ruifang (then known ...

Ruifang District
,
New Taipei New Taipei City is a special municipality and the most populous city in Taiwan. Located in northern Taiwan, the city includes a substantial stretch of the island's northern coastline and surrounds the Taipei Basin, making it the second largest s ...

New Taipei
,
Taiwan Taiwan (), officially the Republic of China (ROC), is a country in East Asia. Neighbouring countries include the People's Republic of China (PRC) to the northwest, Japan to the northeast, and the Philippines to the south. The main island of Ta ...

Taiwan
Rolling stock in a rail transport system generally encounters lower
friction|frictional resistance
friction|frictional resistance
than rubber-tired road vehicles, so passenger and freight cars (carriages and wagons) can be coupled into longer
train pulling passenger cars in Nevada, United States File:World railway network.png|Map of world railway network A train is a form of rail transport consisting of a series of connected vehicles that generally run along a railroad (or railway) ...

train
s. The
operation Operation or Operations may refer to: Science and technology * Surgical operation or surgery, in medicine * Operation (mathematics), a calculation from zero or more input values (called operands) to an output value ** Arity, number of arguments or ...

operation
is carried out by a
railway company A railway company or railroad company is an entity that operates a railroad track or trains. Such a company can either be private or public. Some railway companies operate both the trains and the track, while particularly in European Union (EU), o ...

railway company
, providing transport between
train station A train station, railway station, railroad station or depot is a railway facility or area where trains regularly stop to load or unload passengers, freight or both. It generally consists of at least one track-side platform and a station building ...

train station
s or freight customer facilities. Power is provided by
locomotive upright=1.2|An R class Australia_.html" style="text-decoration: none;"class="mw-redirect" title="Victorian Railways">steam locomotive number R707 as operated by the s_which_either_draw_[[electric_power.html" "title="Victorian Railways of [[Rail transport in Australia">Australia ">Victorian Rail ...

locomotive
s which either draw [[electric power">Victorian Railways of [[Rail transport in Australia">Australia ">Victorian Rail ...

locomotive
s which either draw [[electric power
Victorian Railways of [[Rail transport in AustraliaAustralia ">Victorian Rail ...

locomotive
s which either draw [[electric power" > from a [[railway electrification system or produce their own power, usually by [[diesel engines or, historically, [[steam locomotive|steam engines. Most tracks are accompanied by a [[railway signaling|signalling system. Railways are a safe land transport system when compared to other forms of transport.According to [], railways are the safest on both a per-mile and per-hour basis, whereas [[Aviation|air transport is safe only on a per-mile basis. Railway transport is capable of high levels of passenger and cargo utilisation and energy efficiency, but is often less flexible and more
capital Capital most commonly refers to: * Capital letter, an upper-case letter in any type of writing * Capital city, the area of a country, province, region, or state, regarded as enjoying primary status, usually but not always the seat of the governm ...

capital
-intensive than road transport, when lower traffic levels are considered. The oldest known, man/animal-hauled railways date back to the 6th century BC in
Corinth Corinth ( ; el|Κόρινθος|Kórinthos, ) is the successor to an ancient city, and is a former municipality in Corinthia, Peloponnese, which is located in south-central Greece. Since the 2011 local government reform, it has been part of th ...

Corinth
,
Greece Greece ( el|Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is approximately 10.7 million as of 2018; Athens is its largest and capital city, followed by Thessaloniki. Situated on th ...

Greece
. Rail transport then commenced in mid 16th century in
Germany ) | image_map = | map_caption = | map_width = 250px | capital = Berlin | coordinates = | largest_city = capital | languages_type = Official language | languages = German | demonym = German | government_type = Federal parliamentary republi ...

Germany
in the form of horse-powered
funicular A funicular (, , ) is a transportation system that uses cable-driven cars to connect points along a steep incline. By definition, a funicular uses two counterbalanced passenger cars attached to opposite ends of the same cable, which is looped o ...

funicular
s and
wagonway Wagonways (or Waggonways) consisted of the horses, equipment and tracks used for hauling wagons, which preceded steam-powered railways. The terms plateway, tramway and dramway were used. The advantage of wagonways was that far bigger loads could b ...

wagonway
s. Modern rail transport commenced with the British development of the
steam locomotive climbing the ''Schiefe Ebene'' with 01 1066 as pusher locomotive (video 34.4 MB) A steam locomotive is a type of railway locomotive that produces its pulling power through a steam engine. These locomotives are fuelled by burning combu ...

steam locomotive
in Merhyr Tydfil when Richard Trevithick ran a steam locomotive and loaded wagons between Penydarren Ironworks and Abercynon in 1802. Thus the
railway system in Great Britain
railway system in Great Britain
is the oldest in the world. Built by
George Stephenson George Stephenson (9 June 1781 – 12 August 1848) was a British civil engineer and mechanical engineer. Renowned as the "Father of Railways", Stephenson was considered by the Victorians a great example of diligent application and thirst for im ...

George Stephenson
and his son
Robert The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (Hrōþiberhtaz). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of ''Hruod'' (Old Norse: Hróðr) "fame, glory, honour ...

Robert
's company
Robert Stephenson and Company Robert Stephenson and Company was a locomotive manufacturing company founded in 1823 in Forth Street, Newcastle-upon-Tyne in England. It was the first company in the world created specifically to build railway engines. Famous early locomotives w ...

Robert Stephenson and Company
, the
''Locomotion'' No. 1
''Locomotion'' No. 1
is the first steam locomotive to carry passengers on a public rail line, the
Stockton and Darlington Railway The Stockton and Darlington Railway (S&DR) was a railway company that operated in north-east England from 1825 to 1863. The world's first public railway to use steam locomotives, its first line connected collieries near Shildon with Darling ...

Stockton and Darlington Railway
in 1825. George Stephenson also built the first public inter-city railway line in the world to use only the steam locomotives, the
Liverpool and Manchester Railway The Liverpool and Manchester Railway (L&MR) was the first inter-city railway in the world. It opened on 15 September 1830 between the Lancashire towns of Liverpool and Manchester in England. It was also the first railway to rely exclusively on ...

Liverpool and Manchester Railway
which
opened in 1830
opened in 1830
. With steam engines, one could construct mainline railways, which were a key component of the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840. This transition included going from hand production methods to machin ...

Industrial Revolution
. Also, railways reduced the costs of
shipping Freight transport is the physical process of transporting commodities and merchandise goods and cargo. The term shipping originally referred to transport by sea but in American English, it has been extended to refer to transport by land or ai ...

shipping
, and allowed for fewer lost goods, compared with water transport, which faced occasional sinking of ships. The change from
canals Canals are waterways channels, or artificial waterways, for water conveyance, or to service water transport vehicles. They may also help with irrigation. It can be thought of as an artificial version of a river. Canals carry free surface fl ...

canals
to railways allowed for "national markets" in which prices varied very little from city to city. The spread of the railway network and the use of railway timetables, led to the standardisation of time (railway time) in Britain based on Greenwich Mean Time. Prior to this, major towns and cities varied their local time relative to GMT. The invention and development of the railway in the United Kingdom was one of the most important technological inventions of the 19th century. The world's first underground railway, the
Metropolitan Railway The Metropolitan Railway (also known as the Met) was a passenger and goods railway that served London from 1863 to 1933, its main line heading north-west from the capital's financial heart in the City to what were to become the Middlesex suburbs ...

Metropolitan Railway
(part of the
London Underground The London Underground (also known simply as the Underground, or by its nickname the Tube) is a rapid transit system serving Greater London and some parts of the adjacent counties of Buckinghamshire, Essex and Hertfordshire in the United Kingdom ...

London Underground
), opened in 1863. In the 1880s,
electrified Electrification is the process of powering by electricity and, in many contexts, the introduction of such power by changing over from an earlier power source. The broad meaning of the term, such as in the history of technology, economic history, a ...

electrified
trains were introduced, leading to electrification of tramways and rapid transit systems. Starting during the 1940s, the non-electrified railways in most countries had their steam locomotives replaced by
diesel
diesel
-electric locomotives, with the process being almost complete by the 2000s. During the 1960s, electrified
high-speed railway systems
high-speed railway systems
were introduced in
Japan | image_flag = Flag of Japan.svg | alt_flag = Centered deep red circle on a white rectangle | image_coat = Imperial Seal of Japan.svg | alt_coat = Golden circle subdivided ...

Japan
and later in some other countries. Many countries are in the process of replacing diesel locomotives with electric locomotives, mainly due to environmental concerns, a notable example being
Switzerland ,german: Schweizer(in),french: Suisse(sse), it|svizzero/svizzera or , rm|Svizzer/Svizra |government_type = Federal semi-direct democracy under a multi-party assembly-independent directorial republic |leader_title1 = Federal Council |leader_name ...

Switzerland
, which has completely electrified its network. Other forms of guided ground transport outside the traditional railway definitions, such as
monorail A monorail is a railway in which the track consists of a single rail or a beam. The term is also used to describe the beam of the system, or the trains traveling on such a beam or track. The term originates from joining "mono" (meaning one) and ...

monorail
or
maglev Maglev (derived from ''magnetic levitation'') is a system of train transportation that uses two sets of magnets: one set to repel and push the train up off the track, and another set to move the elevated train ahead, taking advantage of the lac ...

maglev
, have been tried but have seen limited use. Following a decline after
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a global war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all the great powers—forming two opposing milit ...

World War II
due to competition from cars and aeroplanes, rail transport has had a revival in recent decades due to road congestion and rising fuel prices, as well as governments
investing in rail
investing in rail
as a means of reducing
CO2 emissions
CO<sub>2</sub> emissions
in the context of concerns about
global warming Climate change includes both global warming driven by human emissions of greenhouse gases and the resulting large-scale shifts in weather patterns. Though there have been previous periods of climatic change, since the mid-20th century hu ...

global warming
.


History

The history of rail transport began in the prehistoric times.


Ancient systems

The
Post Track The Post Track is an ancient causeway in the valley of the River Brue on the Somerset Levels, England. It dates from around 3838 BCE, making it some 30 years older than the Sweet Track in the same area. Various sections have been scheduled as anci ...

Post Track
, a prehistoric
causeway A causeway is a track, road or railway on the upper point of an embankment across "a low, or wet place, or piece of water". It can be constructed of earth, masonry, wood, or concrete. One of the earliest known wooden causeways is the Sweet Trac ...

causeway
in the valley of the
River Brue The River Brue originates in the parish of Brewham in Somerset, England, and reaches the sea some west at Burnham-on-Sea. It originally took a different route from Glastonbury to the sea, but this was changed by Glastonbury Abbey in the twelfth c ...

River Brue
in the
Somerset Levels The Somerset Levels are a coastal plain and wetland area of Somerset, England, running south from the Mendips to the Blackdown Hills. The Somerset Levels have an area of about and are bisected by the Polden Hills; the areas to the south are ...

Somerset Levels
, England, is one of the oldest known constructed trackways and dates from around 3838 BCE, making it some 30 years older than the
Sweet Track The Sweet Track is an ancient trackway, or causeway, in the Somerset Levels, England, named after its finder, Ray Sweet. It was built in 3807 BC and is the second-oldest timber trackway discovered in the British Isles, dating to the Neolith ...

Sweet Track
from the same area. Various sections have been scheduled as [[ancient monuments. Evidence indicates that there was 6 to 8.5 km long ''[[Diolkos'' paved trackway, which transported boats across the [[Isthmus of Corinth in
Greece Greece ( el|Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is approximately 10.7 million as of 2018; Athens is its largest and capital city, followed by Thessaloniki. Situated on th ...

Greece
from around 600 BC.Verdelis, Nikolaos: "Le diolkos de L'Isthme", ''Bulletin de Correspondance Hellénique'', Vol. 81 (1957), pp. 526–529 (526)[[Georges Raepsaet|Raepsaet, G. & Tolley, M.: "Le Diolkos de l'Isthme à Corinthe: son tracé, son fonctionnement", ''Bulletin de Correspondance Hellénique'', Vol. 117 (1993), pp. 233–261 (256) Wheeled vehicles pulled by men and animals ran in grooves in [[limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were also later built in [[Roman Egypt. In China, a railway has been discovered in south west Henan province near Nanyang city. It was carbon dated to be about 2200 years ago from Qin dynasty. The rails are made from hard wood and treated against corrosion while the sleepers or railway ties made from wood that were not treated and therefore have rotted. Qin railway sleeper was designed to allow horses to gallop through which would go to the next rail station which would then be swapped for a fresh horse. The railway is theorized to have been used for transportation of goods to the front line troops and to fix the Great Wall.


Pre-steam modern systems


Wooden rails introduced

In 1515, [[Matthäus Lang|Cardinal Matthäus Lang wrote a description of the [[Reisszug, a
funicular A funicular (, , ) is a transportation system that uses cable-driven cars to connect points along a steep incline. By definition, a funicular uses two counterbalanced passenger cars attached to opposite ends of the same cable, which is looped o ...

funicular
railway at the [[Hohensalzburg Fortress in Austria. The line originally used wooden rails and a [[hemp haulage rope and was operated by human or animal power, through a [[treadwheel. The line still exists and is operational, although in updated form and is possibly the oldest operational railway. [[Wagonways (or [[Tramway (industrial)|tramways) using wooden rails, hauled by horses, started appearing in the 1550s to facilitate the transport of ore tubs to and from mines, and soon became popular in Europe. Such an operation was illustrated in Germany in 1556 by [[Georgius Agricola in his work [[De re metallica. This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons ''Hunde'' ("dogs") from the noise they made on the tracks. There are many references to their use in central Europe in the 16th century. Such a transport system was later used by German miners at [[Caldbeck, [[Cumbria, England, perhaps from the 1560s. A wagonway was built at [[Prescot, near [[Liverpool, sometime around 1600, possibly as early as 1594. Owned by Philip Layton, the line carried coal from a pit near Prescot Hall to a terminus about half a mile away. A funicular railway was also made at [[Broseley in [[Shropshire some time before 1604. This carried coal for James Clifford from his mines down to the [[river Severn to be loaded onto barges and carried to riverside towns. The [[Wollaton Wagonway, completed in 1604 by [[Huntingdon Beaumont, has sometimes erroneously been cited as the earliest British railway. It ran from [[Strelley, Nottingham|Strelley to [[Wollaton near [[Nottingham. The [[Middleton Railway in [[Leeds, which was built in 1758, later became the world's oldest operational railway (other than funiculars), albeit now in an upgraded form. In 1764, the first railway in the Americas was built in [[Lewiston, New York.


Metal rails introduced

In the late 1760s, the [[Coalbrookdale Company began to fix plates of [[cast iron to the upper surface of the wooden rails. This allowed a variation of [[rail gauge|gauge to be used. At first only [[balloon loops could be used for turning, but later, movable points were taken into use that allowed for switching. A system was introduced in which unflanged wheels ran on L-shaped metal plates these became known as [[plateways. [[John Curr, a Sheffield colliery manager, invented this flanged rail in 1787, though the exact date of this is disputed. The plate rail was taken up by [[Benjamin Outram for wagonways serving his canals, manufacturing them at his [[Butterley Company|Butterley ironworks. In 1803, [[William Jessop opened the [[Surrey Iron Railway, a double track plateway, erroneously sometimes cited as world's first public railway, in south London. Meanwhile, [[William Jessop had earlier used a form of all-iron [[edge rail and flanged wheels successfully for an extension to the [[Charnwood Forest Canal at [[Nanpantan, [[Loughborough, [[Leicestershire in 1789. In 1790, Jessop and his partner Outram began to manufacture edge-rails. Jessop became a partner in the Butterley Company in 1790. The first public edgeway (thus also first public railway) built was [[Lake Lock Rail Road in 1796. Although the primary purpose of the line was to carry coal, it also carried passengers. These two systems of constructing iron railways, the "L" plate-rail and the smooth edge-rail, continued to exist side by side until well into the early 19th century. The flanged wheel and edge-rail eventually proved its superiority and became the standard for railways. Cast iron used in rails proved unsatisfactory because it was brittle and broke under heavy loads. The [[wrought iron invented by [[John Birkinshaw in 1820 replaced cast iron. [[Wrought iron (usually simply referred to as "iron") was a ductile material that could undergo considerable deformation before breaking, making it more suitable for iron rails. But iron was expensive to produce until [[Henry Cort patented the [[puddling (metallurgy)|puddling process in 1784. In 1783 Cort also patented the [[rolling (metalworking)|rolling process, which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was [[hot blast developed by [[James Beaumont Neilson (patented 1828), which considerably reduced the amount of [[coke (fuel) or charcoal needed to produce pig iron. Wrought iron was a soft material that contained slag or ''dross''. The softness and dross tended to make iron rails distort and delaminate and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic. All these developments in the production of iron eventually led to replacement of composite wood/iron rails with superior all iron rails. The introduction of the [[Bessemer process, enabling steel to be made inexpensively, led to the era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The [[open hearth furnace began to replace the Bessemer process near the end of the 19th century, improving the quality of steel and further reducing costs. Thus steel completely replaced the use of iron in rails, becoming standard for all railways. The first passenger [[horsecar or [[tram, [[Swansea and Mumbles Railway was opened between [[Swansea and [[Mumbles in [[Wales in 1807. Horses remained the preferable mode for tram transport even after the arrival of steam engines until the end of the 19th century, because they were cleaner compared to steam driven trams which caused smoke in city streets.


Steam power introduced

In 1784 [[James Watt, a Scottish inventor and mechanical engineer, patented a design for a
steam locomotive climbing the ''Schiefe Ebene'' with 01 1066 as pusher locomotive (video 34.4 MB) A steam locomotive is a type of railway locomotive that produces its pulling power through a steam engine. These locomotives are fuelled by burning combu ...

steam locomotive
. Watt had improved the [[steam engine of [[Thomas Newcomen, hitherto used to pump water out of mines, and developed a [[reciprocating engine in 1769 capable of powering a wheel. This was a large [[stationary engine, powering cotton mills and a variety of machinery; the state of boiler technology necessitated the use of low pressure steam acting upon a vacuum in the cylinder, which required a separate [[Condenser (heat transfer)|condenser and an [[air pump. Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston, raising the possibility of a smaller engine that might be used to power a vehicle. Following his patent, Watt's employee [[William Murdoch produced a working model of a self-propelled steam carriage in that year. The first full-scale working railway
steam locomotive climbing the ''Schiefe Ebene'' with 01 1066 as pusher locomotive (video 34.4 MB) A steam locomotive is a type of railway locomotive that produces its pulling power through a steam engine. These locomotives are fuelled by burning combu ...

steam locomotive
was built in the United Kingdom in 1804 by [[Richard Trevithick, a British engineer born in [[Cornwall. This used high-pressure steam to drive the engine by one power stroke. The transmission system employed a large [[flywheel to even out the action of the piston rod. On 21 February 1804, the world's first steam-powered railway journey took place when Trevithick's unnamed steam locomotive hauled a train along the tramway of the [[Penydarren ironworks, near [[Merthyr Tydfil in [[South Wales. Trevithick later demonstrated a locomotive operating upon a piece of circular rail track in [[Bloomsbury, London, the ''[[Catch Me Who Can'', but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use. The first commercially successful steam locomotive was [[Matthew Murray's [[rack railway|rack locomotive ''[[The Salamanca|Salamanca'' built for the [[Middleton Railway in [[Leeds in 1812. This twin-cylinder locomotive was light enough to not break the [[wagonway|edge-rails track and solved the problem of [[Rail adhesion|adhesion by a [[cog-wheel using teeth cast on the side of one of the rails. Thus it was also the first [[rack railway. This was followed in 1813 by the locomotive ''[[Puffing Billy (locomotive)|Puffing Billy'' built by [[Blackett of Wylam|Christopher Blackett and [[William Hedley for the [[Wylam Colliery Railway, the first successful locomotive running by [[Rail adhesion|adhesion only. This was accomplished by the distribution of weight between a number of wheels. ''Puffing Billy'' is now on display in the [[Science Museum (London)|Science Museum in London, making it the oldest locomotive in existence. In 1814
George Stephenson George Stephenson (9 June 1781 – 12 August 1848) was a British civil engineer and mechanical engineer. Renowned as the "Father of Railways", Stephenson was considered by the Victorians a great example of diligent application and thirst for im ...

George Stephenson
, inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the [[Killingworth [[Coal mining|colliery where he worked to allow him to build a [[Steam engine|steam-powered machine. Stephenson played a pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. He built the locomotive ''[[Blücher (locomotive)|Blücher'', also a successful [[flanged-wheel adhesion locomotive. In 1825 he built the locomotive ''[[Locomotion No 1|Locomotion'' for the
Stockton and Darlington Railway The Stockton and Darlington Railway (S&DR) was a railway company that operated in north-east England from 1825 to 1863. The world's first public railway to use steam locomotives, its first line connected collieries near Shildon with Darling ...

Stockton and Darlington Railway
in the north east of England, which became the first public steam railway in the world in 1825, although it used both horse power and steam power on different runs. In 1829, he built the locomotive ''[[Stephenson's Rocket|Rocket'', which entered in and won the [[Rainhill Trials. This success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives for railways in Great Britain and Ireland, the United States, and much of Europe. The first public railway which used only steam locomotives, all the time, was
Liverpool and Manchester Railway The Liverpool and Manchester Railway (L&MR) was the first inter-city railway in the world. It opened on 15 September 1830 between the Lancashire towns of Liverpool and Manchester in England. It was also the first railway to rely exclusively on ...

Liverpool and Manchester Railway
, built in 1830. Steam power continued to be the dominant power system in railways around the world for more than a century.


Electric power introduced

The first known electric locomotive was built in 1837 by chemist [[Robert Davidson (inventor)|Robert Davidson of [[Aberdeen in Scotland, and it was powered by [[galvanic cells (batteries). Thus it was also the earliest battery electric locomotive. Davidson later built a larger locomotive named ''Galvani'', exhibited at the [[Royal Scottish Society of Arts Exhibition in 1841. The seven-ton vehicle had two [[direct-drive [[reluctance motors, with fixed electromagnets acting on iron bars attached to a wooden cylinder on each axle, and simple [[commutator (electric)|commutators. It hauled a load of six tons at four miles per hour (6 kilometers per hour) for a distance of . It was tested on the [[Edinburgh and Glasgow Railway in September of the following year, but the limited power from batteries prevented its general use. It was destroyed by railway workers, who saw it as a threat to their job security.Renzo Pocaterra, ''Treni'', De Agostini, 2003 [[Werner von Siemens demonstrated an electric railway in 1879 in Berlin. The world's first electric tram line, [[Gross-Lichterfelde Tramway, opened in [[Lichterfelde (Berlin)|Lichterfelde near [[Berlin, Germany, in 1881. It was built by Siemens. The tram ran on 180 Volt DC, which was supplied by running rails. In 1891 the track was equipped with an [[Overhead line|overhead wire and the line was extended to [[Berlin-Lichterfelde West station. The [[Volk's Electric Railway opened in 1883 in [[Brighton, England. The railway is still operational, thus making it the oldest operational electric railway in the world. Also in 1883, [[Mödling and Hinterbrühl Tram opened near Vienna in Austria. It was the first tram line in the world in regular service powered from an overhead line. Five years later, in the U.S. electric [[Tram|trolleys were pioneered in 1888 on the [[Richmond Union Passenger Railway, using equipment designed by [[Frank Julian Sprague|Frank J. Sprague. The first use of electrification on a main line was on a four-mile section of the [[Baltimore Belt Line of the [[Baltimore and Ohio Railroad (B&O) in 1895 connecting the main portion of the B&O to the new line to [[New York City|New York through a series of tunnels around the edges of Baltimore's downtown. Electricity quickly became the power supply of choice for subways, abetted by the Sprague's invention of multiple-unit train control in 1897. By the early 1900s most street railways were electrified. The
London Underground The London Underground (also known simply as the Underground, or by its nickname the Tube) is a rapid transit system serving Greater London and some parts of the adjacent counties of Buckinghamshire, Essex and Hertfordshire in the United Kingdom ...

London Underground
, the world's oldest underground railway, opened in 1863, and it began operating electric services using a [[fourth rail system in 1890 on the [[City and South London Railway, now part of the
London Underground The London Underground (also known simply as the Underground, or by its nickname the Tube) is a rapid transit system serving Greater London and some parts of the adjacent counties of Buckinghamshire, Essex and Hertfordshire in the United Kingdom ...

London Underground
[[Northern line. This was the first major railway to use [[Railway electrification in Great Britain|electric traction. The world's first deep-level electric railway, it runs from the [[City of London, under the [[River Thames, to [[Stockwell in south London. The first practical [[Alternating current|AC electric locomotive was designed by [[Charles Eugene Lancelot Brown|Charles Brown, then working for [[Maschinenfabrik Oerlikon|Oerlikon, Zürich. In 1891, Brown had demonstrated long-distance power transmission, using [[Three-phase electric power|three-phase AC, between a [[Hydroelectricity|hydro-electric plant at [[Lauffen am Neckar and [[Frankfurt am Main West, a distance of 280 km. Using experience he had gained while working for [[Heilmann locomotive|Jean Heilmann on steam-electric locomotive designs, Brown observed that [[AC motor#Three-phase AC synchronous motors|three-phase motors had a higher power-to-weight ratio than [[Direct current|DC motors and, because of the absence of a [[Commutator (electric)|commutator, were simpler to manufacture and maintain. However, they were much larger than the DC motors of the time and could not be mounted in underfloor [[bogies: they could only be carried within locomotive bodies. In 1894, Hungarian engineer [[Kálmán Kandó developed a new type 3-phase asynchronous electric drive motors and generators for electric locomotives. Kandó's early 1894 designs were first applied in a short three-phase AC tramway in Evian-les-Bains (France), which was constructed between 1896 and 1898. In 1896, Oerlikon installed the first commercial example of the system on the [[Trams in Lugano|Lugano Tramway. Each 30-tonne locomotive had two motors run by three-phase 750 V 40 Hz fed from double overhead lines. Three-phase motors run at constant speed and provide [[Regenerative brake|regenerative braking, and are well suited to steeply graded routes, and the first main-line three-phase locomotives were supplied by Brown (by then in partnership with [[Brown, Boveri & Cie|Walter Boveri) in 1899 on the 40 km [[List of railway electrification systems#Burgdorf-Thun Bahn|Burgdorf–Thun line, Switzerland. Italian railways were the first in the world to introduce electric traction for the entire length of a main line rather than a short section. The 106 km [[Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works. The electrical system was three-phase at 3 kV 15 Hz. In 1918, Kandó invented and developed the [[rotary phase converter, enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high voltage national networks. An important contribution to the wider adoption of AC traction came from SNCF of France after World War II. The company conducted trials at AC 50 Hz, and established it as a standard. Following SNCF's successful trials, 50 Hz, now also called industrial frequency was adopted as standard for main-lines across the world.


Diesel power introduced

Earliest recorded examples of an internal combustion engine for railway use included a prototype designed by [[William Dent Priestman, which was examined by [[Sir William Thomson in 1888 who described it as a ''"[Priestman oil engine] mounted upon a truck which is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes."''. In 1894, a two axle machine built by [[Priestman Brothers was used on the [[Hull Docks. In 1906, [[Rudolf Diesel, [[Adolf Klose and the steam and diesel engine manufacturer [[Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered a diesel locomotive from the company in 1909. The world's first diesel-powered locomotive was operated in the summer of 1912 on the [[Winterthur–Romanshorn railway in Switzerland, but was not a commercial success. The locomotive weight was 95 tonnes and the power was 883 kW with a maximum speed of 100 km/h. Small numbers of prototype diesel locomotives were produced in a number of countries through the mid-1920s. A significant breakthrough occurred in 1914, when [[Hermann Lemp, a [[General Electric electrical engineer, developed and patented a reliable [[direct current electrical control system (subsequent improvements were also patented by Lemp). Lemp's design used a single lever to control both engine and generator in a coordinated fashion, and was the [[prototype for all [[diesel–electric locomotive control systems. In 1914, world's first functional diesel–electric railcars were produced for the ''Königlich-Sächsische Staatseisenbahnen'' ([[Royal Saxon State Railways) by [[Waggonfabrik Rastatt with electric equipment from [[Brown, Boveri & Cie and diesel engines from [[Switzerland|Swiss [[Sulzer (manufacturer)|Sulzer AG. They were classified as [[Saxon DET 1-2|DET 1 and DET 2 ([[:de:Sächsischer DET 1–2|de.wiki). The first regular use of diesel–electric locomotives was in [[Switcher|switching (shunter) applications. General Electric produced several small switching locomotives in the 1930s (the famous "[[44-tonner" switcher was introduced in 1940) Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. In 1929, the [[Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse.


High-speed rail

Although steam and diesel services reaching speeds up to 200 km/h were started before the 1960s in Europe, they were not very successful. The first electrified [[high-speed rail [[Tōkaidō Shinkansen was introduced in 1964 between [[Tokyo and [[Osaka in Japan. Since then [[high-speed rail transport, functioning at speeds up to and above 300 km/h, has been built in Japan, Spain, France, Germany, Italy, the People's Republic of China, Taiwan (Republic of China), the [[United Kingdom, [[South Korea, [[Scandinavia, [[Belgium and the [[Netherlands. The construction of many of these lines has resulted in the dramatic decline of short haul flights and automotive traffic between connected cities, such as the London–Paris–Brussels corridor, Madrid–Barcelona, Milan–Rome–Naples, as well as many other major lines. High-speed trains normally operate on [[standard gauge tracks of [[continuously welded rail on [[Grade separation|grade-separated [[Right-of-way (transportation)|right-of-way that incorporates a large [[Minimum railway curve radius|turning radius in its design. While high-speed rail is most often designed for passenger travel, some high-speed systems also offer freight service.


Trains

A train is a connected series of rail vehicles that move along the track. Propulsion for the train is provided by a separate locomotive or from individual motors in self-propelled multiple units. Most trains carry a revenue load, although non-revenue cars exist for the railway's own use, such as for [[maintenance-of-way purposes. The [[railroad engineer|engine driver (engineer in North America) controls the locomotive or other power cars, although [[people movers and some rapid transits are under automatic control.


Haulage

Traditionally, trains are pulled using a locomotive. This involves one or more powered vehicles being located at the front of the train, providing sufficient [[tractive force to haul the weight of the full train. This arrangement remains dominant for freight trains and is often used for passenger trains. A [[push–pull train has the end passenger car equipped with a driver's cab so that the engine driver can remotely control the locomotive. This allows one of the locomotive-hauled train's drawbacks to be removed, since the locomotive need not be moved to the front of the train each time the train changes direction. A [[railroad car is a vehicle used for the haulage of either passengers or freight. A multiple unit has powered wheels throughout the whole train. These are used for rapid transit and tram systems, as well as many both short- and long-haul passenger trains. A [[railcar is a single, self-powered car, and may be electrically propelled or powered by a [[diesel engine. Multiple units have a driver's cab at each end of the unit, and were developed following the ability to build [[electric motors and [[engine (motor)|engines small enough to fit under the coach. There are only a few freight multiple units, most of which are high-speed post trains.


Motive power

[[Steam locomotives are locomotives with a [[steam engine that provides adhesion. [[Coal, [[petroleum, or [[wood is burned in a [[firebox (steam engine)|firebox, boiling water in the [[fire-tube boiler|boiler to create pressurized steam. The steam travels through the [[smokebox before leaving via the chimney or smoke stack. In the process, it powers a [[piston that transmits power directly through a [[connecting rod (US: main rod) and a [[crankpin (US: wristpin) on the [[driving wheel (US main driver) or to a [[crankshaft|crank on a driving axle. Steam locomotives have been phased out in most parts of the world for economical and safety reasons, although many are preserved in working order by [[heritage railways. [[Electric locomotives draw power from a stationary source via an [[Overhead lines|overhead wire or [[third rail. Some also or instead use a [[Battery (electricity)|battery. In locomotives that are powered by high voltage [[alternating current, a [[transformer in the locomotive converts the high voltage, low current power to low voltage, high current used in the [[electric motor|traction motors that power the wheels. Modern locomotives may use [[Electric motor#Three-phase AC induction motors|three-phase AC induction motors or [[direct current motors. Under certain conditions, electric locomotives are the most powerful traction. They are also the cheapest to run and provide less noise and no local air pollution. However, they require high capital investments both for the [[overhead lines and the supporting infrastructure, as well as the generating station that is needed to produce electricity. Accordingly, electric traction is used on urban systems, lines with high traffic and for high-speed rail. [[Diesel locomotives use a diesel engine as the [[prime mover (locomotive)|prime mover. The energy transmission may be either [[diesel-electric transmission|diesel-electric, diesel-mechanical or diesel-hydraulic but diesel-electric is dominant. [[Electro-diesel locomotives are built to run as diesel-electric on unelectrified sections and as electric locomotives on electrified sections. Alternative methods of motive power include [[maglev (transport)|magnetic levitation, horse-drawn, [[funicular|cable, gravity, [[pneumatics and [[gas turbine.


Passenger trains

A passenger train travels between stations where passengers may embark and disembark. The oversight of the train is the duty of a [[conductor (transportation)|guard/train manager/conductor. Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services, operating with a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Service frequencies are often expressed as a number of trains per hour (tph). Passenger trains can usually can be into two types of operation, intercity railway and intracity transit. Whereas intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours).American Railway Engineering and Maintenance of Way Association Committee 24 Education and Training. (2003). Practical Guide to Railway Engineering. AREMA, 2nd Ed. [[Inter-city rail|Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as a [[dining car. Some lines also provide over-night services with [[sleeping cars. Some long-haul trains have been given a [[lists of named passenger trains|specific name. [[Regional rail|Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. [[Commuter rail|Commuter trains serve suburbs of urban areas, providing a daily [[commuting service. [[Airport rail links provide quick access from city centres to [[airports. [[High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways, the limit being regarded at . High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia. [[Maglev (transport)|Magnetic levitation trains such as the [[Shanghai maglev train use under-riding magnets which attract themselves upward towards the underside of a guideway and this line has achieved somewhat higher peak speeds in day-to-day operation than conventional high-speed railways, although only over short distances. Due to their heightened speeds, route alignments for high-speed rail tend to have broader curves than conventional railways, but may have steeper grades that are more easily climbed by trains with large kinetic energy. Their high kinetic energy translates to higher horsepower-to-ton ratios (e.g. ); this allows trains to accelerate and maintain higher speeds and negotiate steep grades as momentum builds up and recovered in downgrades (reducing cut, fill, and tunnelling requirements). Since lateral forces act on curves, curvatures are designed with the highest possible radius. All these features are dramatically different from freight operations, thus justifying exclusive high-speed rail lines if it is economically feasible. [[Higher-speed rail services are intercity rail services that have top speeds higher than conventional intercity trains but the speeds are not as high as those in the high-speed rail services. These services are provided after improvements to the conventional rail infrastructure in order to support trains that can operate safely at higher speeds. [[Rapid transit is an intracity system built in large cities and has the highest capacity of any passenger transport system. It is usually grade-separated and commonly built underground or elevated. At street level, smaller [[trams can be used. [[Light rails are upgraded trams that have step-free access, their own right-of-way and sometimes sections underground. [[Monorail systems are elevated, medium-capacity systems. A [[people mover is a driverless, grade-separated train that serves only a few stations, as a shuttle. Due to the lack of uniformity of rapid transit systems, route alignment varies, with diverse rights-of-way (private land, side of road, street median) and [[track geometry|geometric characteristics (sharp or broad curves, steep or gentle grades). For instance, the [[Chicago 'L' trains are designed with extremely short cars to negotiate the sharp curves in the [[The Loop (CTA)|Loop. New Jersey's [[Port Authority Trans-Hudson|PATH has similar-sized cars to accommodate curves in the trans-Hudson tunnels. San Francisco's [[BART operates large cars on its routes.


Freight trains

A freight train hauls [[cargo using [[goods wagon|freight cars specialized for the type of goods. Freight trains are very efficient, with economy of scale and high energy efficiency. However, their use can be reduced by lack of flexibility, if there is need of transshipment at both ends of the trip due to lack of tracks to the points of pick-up and delivery. Authorities often encourage the use of cargo rail transport due to its fame. [[Containerization|Container trains have become the beta type in the US for bulk haulage. Containers can easily be transshipped to other modes, such as ships and trucks, using cranes. This has succeeded the [[boxcar (wagon-load), where the cargo had to be loaded and unloaded into the train manually. The intermodal [[containerization of cargo has revolutionized the [[supply chain [[logistics industry, reducing ship costs significantly. In Europe, the [[Goods van#Sliding wall wagons|sliding wall wagon has largely superseded the [[Goods van|ordinary covered wagons. Other types of cars include [[refrigerator cars, [[stock car (rail)|stock cars for livestock and [[autoracks for road vehicles. When rail is combined with road transport, a [[roadrailer will allow [[semi-trailer|trailers to be driven onto the train, allowing for easy transition between road and rail. [[Bulk material handling|Bulk handling represents a key advantage for rail transport. Low or even zero transshipment costs combined with energy efficiency and low inventory costs allow trains to handle [[bulk cargo|bulk much cheaper than by road. Typical bulk cargo includes coal, ore, grains and liquids. Bulk is transported in [[gondola (rail)|open-topped cars, [[hopper cars and [[tank cars.


Infrastructure


Right-of-way

Railway tracks are laid upon land owned or leased by the railway company. Owing to the desirability of maintaining modest grades, rails will often be laid in circuitous routes in hilly or mountainous terrain. Route length and grade requirements can be reduced by the use of alternating [[cutting (transportation)|cuttings, bridges and tunnels – all of which can greatly increase the capital expenditures required to develop a right-of-way, while significantly reducing operating costs and allowing higher speeds on longer radius curves. In densely urbanized areas, railways are sometimes laid in tunnels to minimize the effects on existing properties.


Track

[[File:Eastbound over SCB.jpg|Long freight train crossing the Stoney Creek viaduct on the [[Canadian Pacific Railway in southern [[British Columbia Track consists of two parallel steel rails, anchored [[perpendicular to members called [[railroad tie|sleepers (ties) of timber, concrete, steel, or plastic to maintain a consistent distance apart, or [[rail gauge. Rail gauges are usually categorized as [[standard gauge (used on approximately 55% of the world's existing railway lines), [[broad gauge, and [[narrow gauge. In addition to the rail gauge, the tracks will be laid to conform with a [[Loading gauge which defines the maximum height and width for railway vehicles and their loads to ensure safe passage through bridges, tunnels and other structures. The track guides the conical, flanged wheels, keeping the cars on the track without active steering and therefore allowing trains to be much longer than road vehicles. The rails and ties are usually placed on a foundation made of compressed earth on top of which is placed a bed of
ballast Ballast is material that is used to provide stability to a vehicle or structure. Ballast, other than cargo, may be placed in a vehicle, often a ship or the gondola of a balloon or airship, to provide stability. A compartment within a boat, ship, s ...

ballast
to distribute the load from the ties and to prevent the track from [[buckling as the ground settles over time under the weight of the vehicles passing above. The ballast also serves as a means of drainage. Some more modern track in special areas is attached directly without ballast. Track may be prefabricated or assembled in place. By [[Thermite welding|welding rails together to form lengths of [[continuous welded rail, additional wear and tear on rolling stock caused by the small surface gap at the joints between rails can be counteracted; this also makes for a quieter ride. On curves the outer rail may be at a higher level than the inner rail. This is called superelevation or [[cant (road/rail)|cant. This reduces the forces tending to displace the track and makes for a more comfortable ride for standing livestock and standing or seated passengers. A given amount of superelevation is most effective over a limited range of speeds. Points and switches - also known as [[Railroad switch|Turnouts - are the means of directing a train onto a diverging section of track. Laid similar to normal track, a point typically consists of a [[Switch frog|frog (common crossing), check rails and two switch rails. The switch rails may be moved left or right, under the control of the signalling system, to determine which path the train will follow. Spikes in wooden ties can loosen over time, but split and rotten ties may be individually replaced with new wooden ties or concrete substitutes. Concrete ties can also develop cracks or splits, and can also be replaced individually. Should the rails settle due to soil subsidence, they can be lifted by specialized machinery and additional ballast tamped under the ties to level the rails. Periodically, ballast must be removed and replaced with clean ballast to ensure adequate drainage. Culverts and other passages for water must be kept clear lest water is impounded by the trackbed, causing landslips. Where trackbeds are placed along rivers, additional protection is usually placed to prevent streambank erosion during times of high water. Bridges require inspection and maintenance, since they are subject to large surges of stress in a short period of time when a heavy train crosses.


Train inspection systems

The inspection of railway equipment is essential for the safe movement of trains. Many types of [[defect detectors are in use on the world's railroads. These devices utilize technologies that vary from a simplistic paddle and switch to [[infrared and laser scanning, and even [[Ultrasonic testing|ultrasonic audio analysis. Their use has avoided many rail accidents over the 70 years they have been used.


Signalling

[[Railway signalling is a system used to control railway traffic safely to prevent trains from colliding. Being guided by fixed [[Track (rail transport)|rails which generate low friction, trains are uniquely susceptible to collision since they frequently operate at speeds that do not enable them to stop quickly or within the driver's sighting distance; road vehicles, which encounter a higher level of friction between their rubber tyres and the road surface, have much shorter braking distances. Most forms of train control involve movement authority being passed from those responsible for each section of a rail network to the train crew. Not all methods require the use of signals, and some systems are specific to [[single track (rail)|single track railways. The signalling process is traditionally carried out in a [[signal box, a small building that houses the [[lever frame required for the signalman to operate switches and signal equipment. These are placed at various intervals along the route of a railway, controlling specified sections of track. More recent technological developments have made such operational doctrine superfluous, with the centralization of signalling operations to regional control rooms. This has been facilitated by the increased use of computers, allowing vast sections of track to be monitored from a single location. The common method of [[Railway signalling#Blocks|block signalling divides the track into zones guarded by combinations of block signals, operating rules, and automatic-control devices so that only one train may be in a block at any time.


Electrification

The electrification system provides electrical energy to the trains, so they can operate without a prime mover on board. This allows lower operating costs, but requires large capital investments along the lines. Mainline and tram systems normally have overhead wires, which hang from poles along the line. Grade-separated rapid transit sometimes use a ground [[third rail. Power may be fed as [[direct current|direct (DC) or [[alternating current (AC). The most common DC voltages are 600 and 750 V for tram and rapid transit systems, and 1,500 and 3,000 V for mainlines. The two dominant AC systems are [[15 kV AC railway electrification|15 kV and [[25 kV AC railway electrification|25 kV.


Stations

A [[railway station serves as an area where passengers can board and alight from trains. A [[goods station is a yard which is exclusively used for loading and unloading cargo. Large passenger stations have at least one building providing conveniences for passengers, such as purchasing tickets and food. Smaller stations typically only consist of a [[railway platform|platform. Early stations were sometimes built with both passenger and goods facilities. Platforms are used to allow easy access to the trains, and are connected to each other via [[underpasses, [[footbridges and [[level crossings. Some large stations are built as [[cul-de-sac|culs-de-sac, with trains only operating out from one direction. Smaller stations normally serve local residential areas, and may have connection to feeder bus services. Large stations, in particular [[central stations, serve as the main [[transport hub|public transport hub for the city, and have transfer available between rail services, and to rapid transit, tram or bus services.


Operations


Ownership

Since the 1980s, there has been an increasing trend to split up railway companies, with companies owning the rolling stock separated from those owning the infrastructure. This is particularly true in Europe, where this arrangement is required by the European Union. This has allowed open access by any train operator to any portion of the European railway network. In the UK, the railway track is state owned, with a public controlled body ([[Network Rail) running, maintaining and developing the track, while Train Operating Companies have run the trains since [[privatisation of British Rail|privatization in the 1990s. In the U.S., virtually all rail networks and infrastructure outside the [[Northeast corridor|Northeast Corridor are privately owned by freight lines. Passenger lines, primarily [[Amtrak, operate as tenants on the freight lines. Consequently, operations must be closely synchronized and coordinated between freight and passenger railroads, with passenger trains often being dispatched by the host freight railroad. Due to this shared system, both are regulated by the [[Federal Railroad Administration (FRA) and may follow the [[American Railway Engineering and Maintenance-of-Way Association|AREMA recommended practices for track work and [[Association of American Railroads|AAR standards for vehicles.


Financing

The main source of income for railway companies is from [[train ticket|ticket revenue (for passenger transport) and shipment fees for cargo. Discounts and monthly passes are sometimes available for frequent travellers (e.g. [[season ticket and [[rail pass). Freight revenue may be sold per container slot or for a whole train. Sometimes, the shipper owns the cars and only rents the haulage. For passenger transport, [[advertisement income can be significant. Governments may choose to give subsidies to rail operation, since rail transport has fewer [[externalities than other dominant modes of transport. If the railway company is state-owned, the state may simply provide direct subsidies in exchange for increased production. If operations have been privatized, several options are available. Some countries have a system where the infrastructure is owned by a government agency or company – with open access to the tracks for any company that meets safety requirements. In such cases, the state may choose to provide the tracks free of charge, or for a fee that does not cover all costs. This is seen as analogous to the government providing free access to roads. For passenger operations, a direct subsidy may be paid to a public-owned operator, or [[public service obligation tender may be held, and a time-limited contract awarded to the lowest bidder. [[Rail transport in Europe#Subsidies|Total EU rail subsidies amounted to €73 billion in 2005. [[Via Rail Canada and US passenger rail service [[Amtrak are private railroad companies chartered by their respective national governments. As private passenger services declined because of competition from automobiles and airlines, they became [[shareholders of Amtrak either with a cash entrance fee or relinquishing their locomotives and rolling stock. The government subsidizes Amtrak by supplying start-up
capital Capital most commonly refers to: * Capital letter, an upper-case letter in any type of writing * Capital city, the area of a country, province, region, or state, regarded as enjoying primary status, usually but not always the seat of the governm ...

capital
and making up for losses at the end of the [[fiscal year.


Safety

Trains can travel at very high speeds, but they are heavy, unable to deviate from the track, and require great distances to stop. Possible accidents include: [[derailment (jumping the track); a collision with another train; or collision with automobiles, other vehicles, or pedestrians at level crossings, which accounts for the majority of all rail accidents and casualties. To minimize the risk of accidents, the most important safety measures are strict operating rules, e.g. [[railway signalling, and gates or [[grade separation at crossings. [[Train whistles, bells, or [[train horn|horns warn of the presence of a train, while trackside signals maintain the distances between trains. On many high-speed inter-city networks, such as Japan's [[Shinkansen, the trains run on dedicated railway lines without any level crossings. This is an important element in the safety of the system as it effectively eliminates the potential for collision with automobiles, other vehicles, or pedestrians, and greatly reduces the probability of collision with other trains. Another benefit is that services on the inter-city network remain punctual.


Maintenance

As in any [[infrastructure asset, railways must keep up with periodic inspection and maintenance in order to minimize effect of infrastructure failures that can disrupt freight revenue operations and passenger services. Because passengers are considered the most ''crucial cargo'' and usually operate at higher speeds, steeper grades, and higher capacity/frequency, their lines are especially important. Inspection practices include [[track geometry cars or walking inspection. Curve maintenance especially for transit services includes gauging, fastener tightening, and rail replacement. Rail corrugation is a common issue with transit systems due to the high number of light-axle, wheel passages which result in grinding of the wheel/rail interface. Since maintenance may overlap with operations, maintenance windows (nighttime hours, [[off-peak hours, altering train schedules or routes) must be closely followed. In addition, passenger safety during maintenance work (inter-track fencing, proper storage of materials, track work notices, hazards of equipment near states) must be regarded at all times. At times, maintenance access problems can emerge due to tunnels, elevated structures, and congested cityscapes. Here, specialized equipment or smaller versions of conventional maintenance gear are used. Unlike [[highways or [[road networks where capacity is disaggregated into unlinked trips over individual route segments, railway capacity is fundamentally considered a network system. As a result, many components are causes and effects of system disruptions. Maintenance must acknowledge the vast array of a route's performance (type of train service, origination/destination, seasonal impacts), line's capacity (length, terrain, number of tracks, types of train control), trains throughput (max speeds, acceleration/deceleration rates), and service features with shared passenger-freight tracks (sidings, terminal capacities, switching routes, and design type).


Social, economical, and energetic aspects


Energy

Rail transport is an [[energy efficiency in transport|energy-efficient but [[capital intensive|capital-intensive means of mechanized land transport. The tracks provide smooth and hard surfaces on which the wheels of the train can roll with a relatively low level of friction being generated. Moving a vehicle on and/or through a medium (land, sea, or air) requires that it overcomes resistance to its motion caused by friction. A land vehicle's total resistance (in [[Pound (mass)|pounds or [[Newtons) is a [[quadratic function of the vehicle's speed: :\qquad\qquad R = a + bv + cv^2 where: :''R'' denotes total resistance :''a'' denotes initial constant resistance :''b'' denotes velocity-related constant :''c'' denotes constant that is function of shape, frontal area, and sides of vehicle :''v'' denotes velocity :''v''2 denotes velocity, squared Essentially, resistance differs between vehicle's contact point and surface of roadway. Metal wheels on metal rails have a significant advantage of overcoming resistance compared to rubber-tyred wheels on any road surface (railway 0.001g at and 0.024g at ; truck 0.009g at and 0.090 at ). In terms of cargo capacity combining speed and size being moved in a day: * human can carry for per day, or 1 [[Units of transportation measurement#Payload-Distance|tmi/day (1.5 [[Units of transportation measurement#Payload-Distance|tkm/day) * horse and wheelbarrow can carry 4 tmi/day (5.8 tkm/day) * horse cart on good pavement can carry 10 tmi/day (14 tkm/day) * fully utility truck can carry 20,000 tmi/day (29,000 tkm/day) * long-haul train can carry 500,000 tmi/day (730,000 tkm/day) Most trains take 250–400 trucks off the road, thus making the road more safe. In terms of the horsepower to weight ratio, a slow-moving barge requires , a railway and pipeline requires , and truck requires . However, at higher speeds, a railway overcomes the barge and proves most economical. As an example, a typical modern wagon can hold up to of freight on two four-wheel [[bogies. The track distributes the weight of the train evenly, allowing significantly greater loads per [[axle and wheel than in road transport, leading to less wear and tear on the permanent way. This can save energy compared with other forms of transport, such as road transport, which depends on the friction between rubber tyres and the road. Trains have a small frontal area in relation to the load they are carrying, which reduces [[air resistance and thus energy usage. In addition, the presence of track guiding the wheels allows for very long trains to be pulled by one or a few engines and driven by a single operator, even around curves, which allows for [[economies of scale in both manpower and energy use; by contrast, in road transport, more than two [[Articulated vehicle|articulations causes [[fishtailing and makes the vehicle unsafe.


Energy efficiency

Considering only the energy spent to move the means of transport, and using the example of the urban area of [[Lisbon, electric trains seem to be on average 20 times more efficient than automobiles for transportation of passengers, if we consider energy spent per passenger-distance with similar occupation ratios. Considering an automobile with a consumption of around of fuel, the average car in Europe has an occupancy of around 1.2 passengers per automobile (occupation ratio around 24%) and that [[Fuel efficiency|one litre of fuel amounts to about , equating to an average of per passenger-km. This compares to a modern train with an average occupancy of 20% and a consumption of about , equating to per passenger-km, 20 times less than the automobile.


Usage

Due to these benefits, rail transport is a major form of passenger and freight transport in many countries. It is ubiquitous in Europe, with an integrated network covering virtually the whole continent. In India, China, South Korea and Japan, many millions use trains as regular transport. In North America, freight rail transport is widespread and heavily used, but intercity passenger rail transport is relatively scarce outside the [[Northeast Corridor, due to increased preference of other modes, particularly automobiles and airplanes. South Africa, northern Africa and Argentina have extensive rail networks, but some railways elsewhere in Africa and South America are isolated lines. Australia has a generally sparse network befitting its population density but has some areas with significant networks, especially in the southeast. In addition to the previously existing east–west transcontinental line in Australia, a line from north to south has been constructed. The highest railway in the world is the [[Qingzang railway|line to Lhasa, in Tibet, partly running over permafrost territory. Western Europe has the highest railway density in the world and many individual trains there operate through several countries despite technical and organizational differences in each national network.


Social and economic impact


Modernization

Railways are central to the formation of modernity and ideas of progress. The process of modernization in the 19th century involved a transition from a spatially oriented world to a time oriented world. Exact time was essential, and everyone had to know what the time was, resulting in clocks towers for railway stations, clocks in public places, pocket watches for railway workers and for travelers. Trains left on time (they never left early). By contrast, in the premodern era, passenger ships left when the captain had enough passengers. In the premodern era, local time was set at noon, when the sun was at its highest. Every place east to west had a different time and that changed with the introduction of standard time zones. Printed time tables were a convenience for the travelers, but more elaborate time tables, called [[Train order operation|train orders, were even more essential for the train crews, the maintenance workers, the station personnel, and for the repair and maintenance crews, who knew when to expect a train would come along. Most trackage was single track, with sidings and signals to allow lower priority trains to be sidetracked. Schedules told everyone what to do, where to be, and exactly when. If bad weather disrupted the system, telegraphers relayed immediate corrections and updates throughout the system. Just as railways as business organizations created the standards and models for modern big business, so too the railway timetable was adapted to myriad uses, such as schedules for buses, ferries, and airplanes, for radio and television programs, for school schedules, for factory time clocks. The modern world was ruled by the clock and the timetable.


Nation-building

Scholars have linked railroads to successful nation-building efforts by states.


Model of corporate management

According to historian [[Henry Adams the system of railroads needed: :the energies of a generation, for it required all the new machinery to be created capital, banks, mines, furnaces, shops, power-houses, technical knowledge, mechanical population, together with a steady remodelling of social and political habits, ideas, and institutions to fit the new scale and suit the new conditions. The generation between 1865 and 1895 was already mortgaged to the railways, and no one knew it better than the generation itself. The impact can be examined through five aspects: shipping, finance, management, careers, and popular reaction.


=Shipping freight and passengers

= First they provided a highly efficient network for shipping freight and passengers across a large national market. The result was a transforming impact on most sectors of the economy including manufacturing, retail and wholesale, agriculture, and finance. The United States now had an integrated national market practically the size of Europe, with no internal barriers or tariffs, all supported by a common language, and financial system and a common legal system.


=Basis of the private financial system

= Railroads financing provided the basis for a dramatic expansion of the private (non-governmental) financial system. Construction of railroads was far more expensive than factories. In 1860, the combined total of railroad stocks and bonds was $1.8 billion; 1897 it reached $10.6 billion (compared to a total national debt of $1.2 billion). Funding came from financiers throughout the Northeast, and from Europe, especially Britain. About 10 percent of the funding came from the government, especially in the form of land grants that could be realized when a certain amount of trackage was opened. The emerging American financial system was based on railroad bonds. New York by 1860 was the dominant financial market. The British invested heavily in railroads around the world, but nowhere more so than the United States; The total came to about $3 billion by 1914. In 1914–1917, they liquidated their American assets to pay for war supplies.


=Inventing modern management

= Railroad management designed complex systems that could handle far more complicated simultaneous relationships than could be dreamed of by the local factory owner who could patrol every part of his own factory in a matter of hours. Civil engineers became the senior management of railroads. The leading American innovators were the Western Railroad of Massachusetts and the Baltimore and Ohio Railroad in the 1840s, the Erie in the 1850s and the Pennsylvania in the 1860s.


=Career paths

= The railroads invented the career path in the private sector for both blue-collar workers and white-collar workers. Railroading became a lifetime career for young men; women were almost never hired. A typical career path would see a young man hired at age 18 as a shop laborer, be promoted to skilled mechanic at age 24, brakemen at 25, freight conductor at 27, and passenger conductor at age 57. White-collar careers paths likewise were delineated. Educated young men started in clerical or statistical work and moved up to station agents or bureaucrats at the divisional or central headquarters. At each level they had more and more knowledge, experience, and [[human capital. They were very hard to replace, and were virtually guaranteed permanent jobs and provided with insurance and medical care. Hiring, firing, and wage rates were set not by foremen, but by central administrators, in order to minimize favoritism and personality conflicts. Everything was done by the book, whereby an increasingly complex set of rules dictated to everyone exactly what should be done in every circumstance, and exactly what their rank and pay would be. By the 1880s the career railroaders were retiring, and pension systems were invented for them.


Transportation

Railways contribute to social vibrancy and economic competitiveness by transporting multitudes of customers and workers to [[city centres and [[inner suburbs. [[Hong Kong has recognized rail as "the backbone of the [[public transit system" and as such developed their franchised bus system and road infrastructure in comprehensive alignment with their rail services. China's large cities such as [[Beijing, [[Shanghai, and [[Guangzhou recognize rail transit lines as the framework and bus lines as the main body to their metropolitan transportation systems. The Japanese [[Shinkansen was built to meet the growing traffic demand in the "heart of Japan's industry and economy" situated on the [[Tokyo-[[Kobe line.


Wartime roles and air targets

In the 1863-70 decade the heavy use of railways in the American Civil War, and in Germany's wars against Austria and France, provided a speed of movement unheard-of in the days of horses. During much of the 20th century, rail was a key element of war plans for rapid military [[mobilization, allowing for the quick and efficient transport of large numbers of reservists to their mustering-points, and infantry soldiers to the front lines. The Western Front in France during World War I required many trainloads of munitions a day. Rail yards and bridges in Germany and occupied France were major targets of Allied air power in World War II.


Positive impacts

Railways channel growth towards dense city [[agglomerations and along their arteries, as opposed to [[highway expansion, indicative of the U.S. transportation policy, which encourages development of [[suburbs at the periphery, contributing to increased [[vehicle miles traveled|vehicle miles travelled, [[carbon emissions, development of [[greenfield land|greenfield spaces, and depletion of [[natural reserves. These arrangements revalue city spaces, local [[taxes, [[house|housing values, and promotion of [[mixed use development.


Negative impacts

Bryant Chad found that in 1840s Austria the arrival of railways and [[steam locomotives angered locals because of the noise, smell, and pollution caused by the trains and the damage to homes and the surrounding land caused by the engine's soot and fiery embers; and since most travel was very local ordinary people seldom used the new line.


Pollution

A 2018 study found that the opening of the [[Beijing Metro caused a reduction in "most of the air pollutants concentrations (PM2.5, PM10, SO2, NO2, and CO) but had little effect on ozone pollution."


Modern rail as economic development indicator

European [[development economists have argued that the existence of modern rail infrastructure is a significant indicator of a country's economic advancement: this perspective is illustrated notably through the [[Basic Rail Transportation Infrastructure Index (known as BRTI Index).


Subsidies


Asia


=China

= In 2014, total rail spending by China was $130 billion and is likely to remain at a similar rate for the rest of the country's next Five Year Period (2016–2020).


=India

= The [[Indian railways are subsidized by around , of which around 60% goes to commuter rail and short-haul trips.


Europe

According to the 2017 European Railway Performance Index for intensity of use, quality of service and safety performance, the top tier European national rail systems consists of Switzerland, Denmark, Finland, Germany, Austria, Sweden, and France. Performance levels reveal a positive correlation between public cost and a given railway system's performance, and also reveal differences in the value that countries receive in return for their public cost. Denmark, Finland, France, Germany, the Netherlands, Sweden, and Switzerland capture relatively high value for their money, while Luxembourg, Belgium, Latvia, Slovakia, Portugal, Romania, and Bulgaria underperform relative to the average ratio of performance to cost among European countries.


=Russia

= In 2016 [[Russian Railways received 94.9 billion roubles (around US$1.4 billion) from the government.


North America


=United States

= In 2015, funding from the [[Federal government of the United States|U.S. federal government for [[Amtrak was around US$1.4 billion. By 2018, appropriated funding had increased to approximately US$1.9 billion.


See also

* [[Outline of rail transport * [[Passenger rail terminology * [[Rail transport by country * [[List of countries by rail transport network size * [[List of countries by rail usage * [[List of railroad-related periodicals * [[List of railway companies * [[List of railway industry occupations * [[Railway systems engineering * [[Environmental design in rail transportation * [[International Union of Railways * [[British Rail * [[Mine railway * [[Transport Revolution * [[Mega project * [[Track gauge


References


Notes


Further reading

* Burton, Anthony. ''Railway Empire: How the British Gave Railways to the World'' (2018
excerpt
* Chant, Christopher. ''The world's railways: the history and development of rail transport'' (Chartwell Books, 2001). * Faith, Nicholas. ''The World the Railways Made'' (2014
excerpt
* Freeman, Michael. "The Railway as Cultural Metaphor: ‘What Kind of Railway History?’ Revisited." ''Journal of Transport History'' 20.2 (1999): 160-167. * Mukhopadhyay, Aparajita. ''Imperial Technology and ‘Native’Agency: A Social History of Railways in Colonial India, 1850–1920'' (Taylor & Francis, 2018). * Nock, O. S. ''Steam railways in retrospect'' (1966
online
* Nock, O. S. ''Railways at the zenith of steam, 1920-40'' (1970
online
* Nock, O. S. ''Railways in the years of preeminence 1905-1919'' (1971
online
* Nock, O. S. ''Railways in the formative years, 1851-1895'' (1973
online
* Nock, O. S. ''Railways in the transition from steam, 1940-1965'' (1974
online
* Nock, O. S. ''Railways then and now: a world history'' (1975
online
* Nock, O. S. ''Railways of Western Europe'' (1977
online
* Nock, O. S. ''Railways of Asia and the Far East'' (1978) * Nock, O. S. ''World atlas of railways'' (1978
online
* Nock, O. S. ''Railways of the USA'' (1979
online
* Nock, O. S. ''150 years of main line railways'' (1980
online
* Pirie, Gordon. "Tracking railway histories." ''Journal of Transport History'' 35.2 (2014): 242–248. * Sawai, Minoru, ed. ''The Development of Railway Technology in East Asia in Comparative Perspective'' (#Sringer, 2017) * Trains Magazine. ''The Historical Guide to North American Railroads'' (3rd ed. 2014) * Wolmar, Christian. ''Blood, iron, and gold: How the railroads transformed the world'' (Public Affairs, 2011).


External links

{{DEFAULTSORT:Rail Transport [[Category:Rail transport| [[Category:Transportation engineering [[Category:Infrastructure