HOME
        TheInfoList



The Mikoyan-Gurevich MiG-23 (russian: Микоян и Гуревич МиГ-23; NATO reporting name: Flogger) is a variable-geometry fighter aircraft, designed by the Mikoyan-Gurevich design bureau in the Soviet Union. It is a third-generation jet fighter, the world's most-produced variable-geometry aircraft, along with similar Soviet fighters such as the Su-17 "Fitter". It was the first Soviet fighter to field a look-down/shoot-down radar and one of the first to be armed with beyond-visual-range missiles. Production started in 1969 and reached large numbers with over 5,000 aircraft built, making it the most produced variable-sweep wing aircraft in history. Today the MiG-23 remains in limited service with some export customers. The basic design was also used as the basis for the Mikoyan MiG-27, a dedicated ground-attack variant. Among many minor changes, the MiG-27 replaced the MiG-23's nose-mounted radar system with an optical panel holding a laser designator and a TV camera.

Development

The MiG-23's predecessor, the MiG-21, was fast and agile, but limited in its operational capabilities by its primitive radar, short range, and limited weapons load (restricted in some aircraft to a pair of short-range R-3/K-13 (AA-2 "Atoll") air-to-air missiles). Work began on a replacement for the MiG-21 in the early 1960s. The new aircraft was required to have better performance and range than the MiG-21, while carrying more capable avionics and weapons including beyond-visual-range (BVR) missiles. A major design consideration was take-off and landing performance. The VVS demanded the new aircraft have a much shorter take-off run. Low-level speed and handling was also to be improved over the MiG-21. Manoeuvrability was not an urgent requirement. This led Mikoyan to consider two options: lift jets, to provide an additional lift component, and variable-geometry wings, which had been developed by TsAGI for both "clean-sheet" aircraft designs and adaptations of existing designs.Lake 1992, pp. 43–44.Mladenov 2004, p. 45. The first option, for an aircraft fitted with lift jets, resulted in the "23-01", also known as the MiG-23PD (' – lift jet), was a tailed delta of similar layout to the smaller MiG-21 but with two lift jets in the fuselage. This first flew on 3 April 1967, but it soon became apparent that this configuration was unsatisfactory, as the lift jets became useless dead weight once airborne.Belyakov and Marmain 1992, pp. 351–355.Lake 1992, pp. 43–45. Work on the second strand of development was carried out in parallel by a team led by A.A Andreyev, with MiG directed to build a variable-geometry prototype, the "23-11" in 1965.Lake 1992, p. 45. The 23-11 featured variable-geometry wings which could be set to angles of 16, 45 and 72 degrees, and it was clearly more promising. The maiden flight of 23–11 took place on 10 June 1967, flown by the famous MiG test pilot Aleksandr Vasilyevich Fedotov (who set the absolute altitude record in 1977 in a Mikoyan-Gurevich MiG-25). Six more flight prototypes and two static-test prototypes were prepared for further flight and system testing. All featured the Tumansky R-27-300 turbojet engine with a thrust of 77 kN (17,300 lbf). The order to start series production of the MiG-23 was given in December 1967. The first production "''MiG-23S''" (NATO reporting name 'Flogger-A') took to the air on 21 May 1969, with Fedotov at the controls. The General Dynamics F-111 and McDonnell Douglas F-4 Phantom II were the main Western influences on the MiG-23. The Soviets, however, wanted a much lighter, single-engined fighter to maximize agility. Both the F-111 and the MiG-23 were designed as fighters, but the heavy weight and inherent stability of the F-111 turned it into a long-range interdictor and kept it out of the fighter role. The MiG-23's designers kept the MiG-23 light and agile enough to dogfight with enemy fighters.

Design



Armament

The armament carried by the Flogger changed as new models underwent development. The initial production variant, the MiG-23S, was fitted with the S-21 fire control system borrowed from the MiG-21S/SM. Based on the RP-22SM Sapfire-21 radar with an ASP-PFD-21 lead computing gunsight, it could carry only four R-3/K-13 (AA-2 "Atoll") air-to-air missiles (typically two SARH R-3Rs and two IR R-3Ss) in addition to a Gryazev-Shipunov GSh-23L autocannon. In the ground-attack role, the MiG-23S could carry two Kh-23 (AS-7 "Kerry") radio guidance air-to-surface missiles, two to four 16-round S-5 rocket packs, S-24 rocket packs or up to of various bomb types.Mladenov (2016), Ch. 3 - ''Early Testing Troubles'' The MiG-23 Edition 1971, equipped with the Sapfir-23L radar and TP-23 infrared search and track (IRST), could fire the new BVR R-23 (AA-7 "Apex") missile, although only the R-23R SARH variant. However the Sapfir-23L was considered unreliable and lacked look-down/shoot-down capability. The MiG-23M, the definitive first-generation variant of the fighter, was equipped with the improved Sapfir-23D look-down/shoot-down radar and could carry a pair of R-23 missiles (either the R-23R SARH or R-23T IR variants) and a pair of R-60 (AA-8 "Aphid") missiles. Starting with aircraft number 3201, the APU-60-2 double-rail launcher was introduced, allowing the MiG-23M to carry four R-60 missiles. The MiG-23 could carry up to in bombs and rockets, and from aircraft number 3701 onward it could fire the KH-23 or KH-23M air-to-surface missile. Lastly, all VVS MiG-23Ms had the ability to mount a single nuclear bomb via special adapter under the fuselage, either the 10-kiloton RN-24 or 30-kiloton RN-40. In the second-generation MiG-23ML, a new SUV-2ML weapons system allowed the Flogger to carry both types of R-23 missiles simultaneously. Typical loadout was an R-23R on the starboard wing pylon and an R-23T on the port wing pylon. Besides other ordnance (including a single nuclear bomb) the MiG-23ML could also carry two UPK-23-250 23mm gun pods on the underwing pylons. Starting in 1981, the MiG-23MLA could carry the improved Vympel R-24R/T missiles.Mladenov (2016), Ch. 3 - ''The Refined MiG-23ML'' The final fighter variant, the MiG-23MLD, could also carry the improved R-24R/T missiles in addition to a pair of B8M1 20-round rocket pods firing S-8 rockets, the Kh-23/KH-23M air-to-surface missile, or a single RN-24 or RN-40 nuclear bomb. The MiG-23MLD's maximum bomb load was , with a standard loadout comprising four FAB-500 500kg general-purpose bombs (GP) or ZAB-500 napalm bombs. Other configurations included sixteen FAB-100 100kg GP bombs carried on four ejector racks, four FAB-250 250kg GP bombs, or two RBK-500 cluster bombs.

Cockpit

The MiG-23 cockpit was considered an improvement over previous Soviet fighters as it was more ergonomic in its layout. However the pilot still had a high workload, having to manipulate switches and monitor gauges, compared to more modern aircraft with HOTAS controls. The instrument panel did feature a white stripe to serve as a visual aid for centering the control column during an out-of-control situation.Davies (2008), ch. 14 To prevent the pilot from exceeding a 17° angle of attack, the control column incorporated a "knuckle rapper" which would strike the pilot's knuckles as the limit was approached.Davies (2008), ch. 14 Cockpit visibility was also somewhat poor in the MiG-23, although the view straight ahead was superior compared to the MiG-21. In particular visibility was poor looking to the rear, partially due to the fighter's ejection seat which wrapped around the pilot's head, requiring the pilot to lean forward to look to the side or behind them. To assist with looking directly behind the pilot, the cockpit was fitted with a mirror or 'periscope' embedded in the middle rail of the canopy similar to on the MiG-17. With an infinity focus, the periscope provided a clear view of behind the plane, but did not have a wide field of view. The MiG-23's ejection seat, the KM-1, was built with extreme altitude and speed in mind: leg stirrups, shoulder harness, pelvic D-ring, and a 3-parachute system. Engaging the ejection seat could take a long time, as the pilot had to place their feet in the stirrups, let go of the control column, grab the two trigger handles, squeeze and lift them. The first parachute, the size of a large handkerchief, was deployed out of a telescoping rod which would pop out of the top back of the seat as it started to clear the windscreen windbreak area. It was supposed to help rotate the seat into the windblast and stabilize into a flight path that would take it above and behind the vertical stabilizer. As the first chute and rod separated from the seat, a larger drogue parachute deployed to slow down the seat, allowing the deployment of the main parachute. If engaged at low altitudes, the seat included a barometric element that allowed the drogue chute to separate more quickly. One problem with the KM-1 was that it was not a zero-zero ejection seat, and would only work at a minimum speed of 90 knots.Davies (2008), ch. 8 Starting with the MiG-23 Edition 1971, the MiG-23 replaced the head-down radar scope with a ASP-23D gunsight/head-up display onto which data from the radar was displayed. This was updated in the MiG-23MLA with the ASP-17ML gunsight/HUD. Because information from the radar had to fit on the combining glass of the HUD, the amount of space that could be scanned was limited to a relatively thin slice. This required that the fighter be flown very close to the target's altitude and well ahead of it to be picked up, necessitating good ground-controlled interception (GCI) instructions. Israeli pilots who flew captured versions of the MiG-23 found it relatively easy to use.

Control Surfaces

The MiG-23 was among the first Soviet aircraft to feature variable-geometry wings. These were hydraulically controlled by means of a small lever set beneath the throttle in the cockpit. There were three main sweep angles that were set by the pilot for different levels of flying. The first, with the wings fully spread at 16°, was used when cruising at below Mach .7 or when taking off and landing. Putting the wings at mid-spread of 45° was used for basic fighter maneuvering, as well as cruising at high speeds or making low-altitude intercepts. Moving the wings to fully swept at 72° was reserved for making high-altitude intercepts or high-speed dashes at low altitudes.Mladenov (2016), Ch. 3 - ''New Design Features'' The wings were not fitted with ailerons but used spoilers to control rolling when the wings were at 16° and 45° angles. In addition to the spoilers, the wings were also fitted with trailing edge flaps and leading edge slats to try and give the fighter a short take-off and landing performance. Although there was a gauge in the cockpit showing the position of the wings, when they were in motion, and the Mach limit for each position, there was none to indicate what was the optimum wing position for the prevailing flight condition.Davies (2008), ch. 7 Two tailerons controlled pitch and roll, in the latter case working in conjunction with wing control surfaces when the wings were not fully swept back. In addition to a large vertical stabilizer (which also stored the brake parachute for landings), the MiG-23 had a ventral fin to improve directional stability at high speeds. During take-off and landing, the fin hinged sideways when the landing gear was extended to prevent it striking the ground. Starting with the Edition 1971 model, the MiG-23's wings (known as Edition 2) had their surface area increased by 20%, necessitating the positions be changed to 18°, 47° 40', and 74° 40' (though for convenience the cockpit indicators and manuals retained the original labeling). A dogtooth extension was added but the leading-edge slats were removed to simplify manufacture. However this proved to exacerbate the Flogger's stability issues at high AoA and made take-off and landings more difficult.Mladenov (2016), Ch. 3 - ''MiG-23 Edition 1971'' The definitive Edition 3 wing design, introduced with the MiG-23M, retained the dimensions of the Edition 2 but added back in the leading-edge slats. A strengthening of the wing pivot in the MiG-23MLD allowed the addition of a fourth wing sweep position of 33°, which was intended to reduce turn radius and allow for rapid deceleration during dogfights. However, with the wings at the 33° position, the MiG-23MLD was much more difficult to handle and suffered from poor acceleration. Moving the wings to this position was primarily reserved for experienced MiG-23 pilots, while combat manuals continued to emphasize the 45° position.Mladenov (2016), Ch. 3 - ''MiG-23MLD - The Ultimate Fighter Flogger''

Engine

The MiG-23 original engine was a thrust Tumansky R-29-300 with thrust to spare at the aircraft top speed of Mach 2.4.Davies (2008), ch. 5 It also had a fast acceleration time taking 3–4 seconds to go from idle to full power, and took less than a second to ignite the afterburner. The aircraft placarded top speed was set by cockpit canopy structural strength. The engine intake had louvers which supplied the environmental control system with air to keep the avionics and pilot cool. Similar to early examples of the F-4 Phantom J-79 engine, the R-29 would generate smoke when operating without the afterburner. The engine outer cases ran very hot, which sometimes triggered false fire alarms. Moreover, the engine was only good for a couple of hundred sorties at most before requiring replacement.Davies (2008), ch 10 This was partly because Russian engines were designed to last about 150 hours before being replaced. It was also a way to generate income from export customers by selling them new engines in exchange for hard currency. Changing an engine was difficult because the aircraft had to be separated in the middle. The engine was also a weak point on early models of the MiG-23 as it was not stressed for high yaw manoeuvre loads. If the fighter entered a spin, the engine shaft could bend. Compressor blades would rub sending debris into the turbine causing turbine blades to break off, destroying the engine. Introduction of the R-29B-300 addressed this design deficiency.

Fuel

The prototype version of the MiG-23 carried three fuel tanks in the fuselage, with capacities of 1,920, 820 and 710 liters respectively. Additionally, each wing carried three integral fuel tanks of 62.5, 137.5 and 200 liters. The No. 2 fuel tank in the fuselage also functioned as the aircraft's carry-through wingbox and was welded together with thick plates of VNS-2 steel alloy.Mladenov (2016), Ch. 3 - ''VG Concept'' The MiG-23 ''Edition 1971'' redesign allowed for a fourth tank carrying 470 liters to be fitted in the rear of the fuselage. This fuel capacity gave the MiG-23 better endurance than a "clean" F-4 (carrying no drop tanks); if traveling at the MiG-23's endurance speed of 230 knots an individual sortie could be stretched out to an hour, though if afterburner was involved that could fall down to around 45 minutes or less. Introduced with the MiG-23M were plumbed pylons under the moveable wing panels which could be fitted with 800-liter drop tanks, though these could only be carried with the wings at full spread and had to be jettisoned otherwise,Mladenov (2016), Ch. 3 - ''MiG-23M/MF - The Most Numerous Variant'' and a third 800-liter drop tank could be carried under the fuselage on the MiG-23ML. Early models of the MiG-23 ran into problems with the plane's No. 2 fuel tank suffering structural failures, which were especially problematic as the tanks were integral to the structure rather contained within a fuel bladder. This meant that as the structure developed hairline fractures fuel would seep out. This eventually forced severe g-force limits until a solution could be found. Prior to quality being improved in later models, one fix was to weld a plate on the inside surface and a stiffener on the outer skin.


Performance tests


Most potential enemies of the USSR and its client states have had opportunities to evaluate the MiG-23's performance. In the summer of 1977, after a political realignment by the Egyptian government, Egypt provided a number of MiG-23MSs and MiG-23BNs to the United States; these were evaluated under a pair of exploitation programs codenamed HAVE PAD and HAVE BOXER respectively. These and other MiGs, including additional MiG-23s acquired through other sources, were used as part of a secret training program known as project Constant Peg to familiarize American pilots with Soviet aircraft.Davies (2008), ch.3 Additionally, a Cuban pilot flew a MiG-23BN to the U.S. in 1991, and a Libyan MiG-23 pilot also defected to Greece in 1981. In both cases, the aircraft were later repatriated. Initially, American intelligence on the MiG-23 assumed that the fighter could turn well and had reasonable acceleration capability, but testing during HAVE PAD proved this assumption to be incorrect. While its turning capability was comparable to an original F-4E Phantom, newer American fighters like the F-15 Eagle or F-4E upgraded with slats could easily out-turn the MiG-23 in a dogfight. In fact, whenever the MiG-23 approached high angle of attack it became very unstable and liable to leave controlled flight.Peck Jr. (2012), ch. 3Peck Jr (2012), ch. 4 Conversely, the MiG-23's acceleration capability was tremendous, particularly at low altitudes (below ) and crossing the sound barrier, where it could out-accelerate any American fighter. The fighter's small profile gave it the advantage of being hard to spot visually as well. Overall, HAVE PAD testing determined that the MiG-23 - while a poor dogfighter - made for a good interceptor capable of performing hit-and-run attacks. Despite its limitations, in the hands of a very capable pilot the MiG-23 represented a serious threat in air combat. Test pilots who flew the MiG-23 as part of Constant Peg came to similar conclusions about the MiG-23 being an effective interceptor rather than a dogfighter, but were more critical of the planes they flew. Among their complaints was that the MiG-23's airframe was too easily overstressed; that it was unstable in yaw as it passed the sound barrier and again when approaching Mach 2; that its narrow landing gear, although designed to be used on unprepared surfaces, tended to slip and slide in adverse weather conditions; and because it sat low to the ground, it could more easily suck debris into its engine intakes. In general the MiG-23 was unpopular with the American pilots because it was so dangerous to fly. Among the nicknames the Constant Peg pilots had for the MiG-23 was the "Looping Hog" because it flew like a pig and one of the few basic fighter maneuvers (BFM) it could pull off in a dogfight was a massive loop. If going fast enough, a MiG-23 could easily perform a loop high that other planes would struggle to follow, at the bottom of which it would cut back inside them and proceed to fly off until outside their visual range so it could come back in again. The only other BFM the MiG-23 could perform, according to Col (ret.) John "Sax" Saxman, was the "no circle fight": as the two aircraft approached and passed close by each other the MiG-23, instead of trying to turn one way or the other with the enemy aircraft (as in a one-circle or two-circle fight), would speed on ahead until it could come back into the fight from a different angle.Davies (2008), ch. 13 The MiG-23's deficits and qualities were also recognized by allied air forces who received the fighter from the Soviet Union, including the East German Air Force: The pilots of Constant Peg sought to teach these and other aspects of the MiG-23 to the frontline Tactical Air Command squadrons (nicknamed Blue Air) against whom they trained: The MiG-23's speed in particular was used as a teaching aid for a couple of situations during a potential war with the Soviet Union. The first was at low altitudes to demonstrate its ability to run down any NATO or American strike aircraft (barring the late-model F-111F Aardvark), which would be attempting to go low and fast to penetrate Soviet territory. The second was to simulate the MiG-25 Foxbat, a high, fast flyer (HHF) which would be going after high-value targets such as aerial refueling or airborne early warning and control aircraft like the E-3 Sentry. The early MiG-23M series was also used to test the American Northrop F-5s captured by the North Vietnamese and sent to the former USSR for evaluation. The Russians acknowledged the F-5 was a very agile aircraft, and at some speeds and altitudes better than the MiG-23M, one of the main reasons the MiG-23MLD and MiG-29 developments were started. These tests allowed the Russians to make modifications to several of their fourth-generation aircraft. The MiG-23, however, was not designed to combat F-5s, a weakness reflected by early MiG-23 variants.Kondaurov, V. N
"Испытания на Волжских Берегах" (Translation: "Testing on the Volga shores" in Russian).
testpilot.ru. Retrieved: 28 January 2011.
Dutch pilot Leon van Maurer, who had more than 1,200 hours flying F-16s, flew against MiG-23MLs from air bases in Germany and the U.S. as part of NATO's aerial mock combat training with Soviet equipment. He concluded the MiG-23ML was superior in the vertical to early F-16 variants, just slightly inferior to the F-16A in the horizontal, and had superior BVR capability. The Soviet combat manual for MiG-23M pilots claims the MiG-23M to have a slight superiority over the F-4 and Kfir, and describes combat history involving Syrian MiG-23MFs versus Israeli F-15 and F-16s, which it labels "successful". This manual also recommends tactics to be used against these fighters.

Operational history

Western and Russian aviation historians usually differ in respect to combat record for their military vehicles and doctrines part due to the bias in favor of their respective national industries and academies. They also usually accept claims going along with their respective political views since usually many conflicting and contradictory reports are written and accepted by their respective historians.Babich 1999, pp. 24–25Ilyin 2000, pp. 36–37 Before recent years, with widespread use of hand portable cameras, little pictorial evidence could be published about specific losses and victories of the different combat systems, with a limited number of losses and victories confirmed by both parties.

Soviet and Warsaw Pact

Because of its distinctive appearance with large air intakes on both sides of the fuselage the aircraft was nicknamed "''Cheburashka''" by some Soviet pilots after a popular Russian cartoon character representing a fictional animal with big ears. The nickname did not stick and was later firmly assigned to the Antonov An-72/74, although to this day it is sometimes applied to different aircraft with similar exterior features, including the USAF A-10 Thunderbolt II. The aircraft was not used in large numbers by the non-Soviet air forces of the Warsaw Pact as originally envisioned. When the MiG-23s were initially deployed, they were considered the elites of the Eastern Bloc air forces. However, very quickly the disadvantages became evident and the MiG-23 did not replace the MiG-21 as initially intended. The aircraft had some deficiencies that limited its operational serviceability and its hourly operating cost was thus higher than the MiG-21s. The Eastern Bloc air forces used their MiG-23s to replace MiG-17s and MiG-19s still in service. By 1990, over 1,500 MiG-23s of different models were in service with the VVS and the V-PVO. With the dissolution of the Soviet Union, the new Russian Air Force began to cut back its fighter force, and it was decided the single-engined MiG-23s and MiG-27s were to be retired to operational storage. The last model to serve was the MiG-23P air defense variant and it was retired on 1 May 1998. When East and West Germany unified, no MiG-23s were transferred to the German Air Force, but twelve former East German MiG-23s were supplied to the US. When Czechoslovakia split into the Czech Republic and Slovakia, the Czechs received all the MiG-23s, which were retired in 1998. Hungary retired their MiG-23s in 1996, Poland in 1999, Romania in 2000, and Bulgaria in 2004. The MiG-23 was the Soviet Air Force's "Top Gun"-equivalent aggressor aircraft from the late 1970s to the late 1980s. It proved a difficult opponent for early MiG-29 variants flown by inexperienced pilots. Exercises showed when well-flown, a MiG-23MLD could achieve favorable kill ratios against the MiG-29 in mock combat by using hit-and-run tactics and not engaging the MiG-29s in dogfights. Usually the aggressor MiG-23MLDs had a shark mouth painted on the nose just aft of the radome, and many were piloted by Soviet–Afghan War veterans. In the late 1980s, these aggressor MiG-23s were replaced by MiG-29s, also featuring shark mouths. ;Soviet–Afghan War Soviet MiG-23s were used over Afghanistan. Some of them were claimed to have been shot down. Soviet and Afghan MiG-23s and Pakistani F-16s clashed a few times during the Soviet–Afghan War from 1987. Two MiG-23 were claimed shot down in air to air fight by Pakistani F-16s when crossing the border (they both were not confirmed) while one F-16 was shot down on 29 April 1987. Pakistani and Western sources consider it a friendly fire incident but the Soviet-backed Afghan government of the time claimed that Soviet aircraft downed the Pakistani F-16 – a claim that ''The New York Times'' and the ''Washington Post'' also reported.Weintaub, Richard M
"Afghanistan Says It Downed F16 Fighter From Pakistan: U.S. Officials Say Soviet Pilots Involved."
''Washington Post,'' 2 May 1987. Retrieved: 28 January 2011.
Weisman, Steven R

''The New York Times'', 2 May 1987. Retrieved: 28 January 2011.
According to a Russian version of the event, the F-16 was shot down when Pakistani F-16s encountered Soviet MiG-23MLDs. Soviet MiG-23MLD pilots, while on a bombing raid along the Pakistani-Afghan border, reported being attacked by F-16s and then seeing one F-16 explode. It could have been downed by gunfire from a MiG whose pilot did not report the kill, because Soviet pilots were not allowed to attack Pakistani aircraft without permission.Markovskiy 1997, p. 28 In 1988, Soviet MiG-23MLDs using R-23s (NATO: AA-7 "Apex") downed two Iranian AH-1J Cobras that had intruded into Afghan airspace. In a similar incident a decade earlier, on 21 June 1978, a PVO MiG-23M flown by Pilot Captain V. Shkinder shot down two Iranian Boeing CH-47 Chinook helicopters that had trespassed into Soviet airspace, one helicopter being dispatched by two R-60 missiles and the other by cannon fire. ;Soviet support of People's Democratic Republic of Yemen The USSR supported the People's Democratic Republic of Yemen with Soviet Air Force MiG-23BN and MiG-25R based in Aden starting from the late Seventies. During the South Yemen Civil War in January 1986, the Soviet MiG-23BN fleet flew strikes in support of loyalist forces. It is not clear if these MiG-23 were ever transferred to the South Yemeni control and later to the unified Yemeni Air Force or they always remained under Soviet control and withdrew later.

Syria

;Combat against Israel (since 1973) The first MiG-23s were supplied to Syria on 14 October 1973, when two MiG-23MSs and two MiG-23UBs were shipped in crates, aboard An-12B transports. By the time these planes could be assembled, flight-tested and their crews made combat ready, the war with Israel was over. During 1974 several Syrian MiG-23s were lost in accidents. The process of making the MiG-23 operational was complex and difficult, and only eight were operational by 1974. The first MiG-23s to see combat were export variants with many limitations. For example, the MiG-23MS lacked a radar warning receiver. In addition, compared to the MiG-21, the aircraft was mechanically complex and expensive and also less agile. Early export variants also lacked many "war reserve modes" in their radars, making them vulnerable against electronic countermeasures (ECM), at which the Israelis were especially proficient. On 13 April 1974, after almost 100 days of artillery exchanges and skirmishes along the Golan Heights, Syrian helicopters delivered commandos to attack the Israeli observation post at Jebel Sheikh. This provoked heavy clashes in the air and on the ground for almost a week. On 19 April 1974, Captain al-Masry, flying a MiG-23MS on a weapons test mission, spotted a group of IAF F-4Es and shot two of them down after firing three missiles. He was about to attack another F-4 with cannon fire, but was shot down by friendly fire from a SAM battery.Gordon and Dexter 2005, p. 67 Due to this success, an additional 24 MiG-23MS interceptors, as well as a similar number of MiG-23BN strike variants, were delivered to Syria during the following year. In 1978 deliveries of MiG-23MFs started and two squadrons were equipped with them. The MiG-23MF, MiG-23MS and MiG-23BN were used in combat by Syria over Lebanon between 1981 and 1985. On 26 April 1981, Syria claimed that two Israeli A-4 Skyhawks attacking a camp in Sidon were shot down by two MiG-23MSs. However, Israel does not report any loss of aircraft from this incident and no loss of aircraft was reported on that date. Russian historian Vladimir Ilyin writes that the Syrians lost six MiG-23MFs, four MiG-23MSs and a few MiG-23BNs in June 1982. One more MiG-23 fighter was lost in July. The Israelis also claimed that they shot down two MiG-23s in 1985, which the Syrians deny. Overall, 11–13 Syrian MiG-23 fighter variants were lost in air combat from 1982 to 1985. Israel confirms only loss of BQM-34 Firebee which was downed by Syrian MiG-23MF on 6 June 1982. At the end of April 2002 Syrian MiG-23ML shot down an Israeli UAV with an air-to-air missile near As-Suwayda. ;Syrian Civil War A former Syrian Air Force MiG-23MS became iconic of the Siege of Abu al-Duhur Airbase: on 7 March 2012, Syrian rebels used a 9K115-2 Metis-M anti-tank guided missile to hit the derelict MiG. Later, in March 2013 they entered in the base, showing the worn out and damaged MiG. Finally, in May 2013, the Syrian Air Force bombed it to completely destroy the wreck. Syrian MiG-23BNs bombed the city of Aleppo on 24 July 2012, becoming the first use of fixed-wing aircraft for bombing in the Syrian civil war. On 13 August 2012, a Syrian MiG-23BN was reportedly shot down by the rebels of the Free Syrian Army near Deir ez-Zor, although the government claimed that it went down due to technical difficulties. Since then, Syrian Air Force MiG-23s together with different Syrian Air Force fighter jets have regularly been spotted performing attack runs on Syrian insurgents, who have claimed different MiGs being shot down or destroyed on the ground on different occasions. On 23 March 2014, one Syrian MiG-23 was shot down after being hit by an AIM-9 Sidewinder fired by a Turkish F-16 in the vicinity of the Syrian town of Kessab. The pilot ejected safely and was recovered by friendly forces. Turkish sources said the fighter violated Turkish airspace and it was downed after several radio warnings while approaching the border. Another Syrian MiG-23 returned to Syria after trespassing into Turkish airspace. On 15 June 2017, one Jordanian Selex ES Falco UAV was shot down by a Syrian MiG-23MLD in the vicinity of the Syrian town of Derra. On 16 June, another Selex ES Falco was shot down by MiG-23ML both using R-24R missiles. On 9 September 2020, a Syrian MiG-23 crashed in Deir ez-Zor Governorate without information on the fate of its pilot.

Iraq

;Iran-Iraq War (1980–1988) The MiG-23 took part in the Iran–Iraq War and was used in both air-to-air and air-to-ground roles. The reports about performance in air combat are mixed – some authors claim that Iraqi MiG-23s had some victories and several losses against Iranian F-14s, F-5s and F-4s. * Iranian Air Force Colonel, Mohammed-Hashem All-e-Agha was shot down by an Iraqi MiG-23ML while flying his F-14A on 11 August 1984. * Iranian Air Force Colonel Abdolbaghi Darvish was shot down by an Iraqi MiG-23ML while flying his Fokker F27-600 on 20 February 1986. All 49 crew members and passengers were killed. The aircraft was carrying a delegation of military and government officials on a mission. *Iranian Air Force Captain Ahmad Moradi Talebi was shot down by an Iraqi Mig-23ML while flying his F-14A on 2 September 1986. * Iranian Air Force Captain Bahram Ghanei was shot down by a MiG-23ML while flying his F-14A on 17 January 1987."Chronological Listing of Iranian Air Force Grumman F-14 Tomcat Losses & Ejections."
ejection-history.org.uk. Retrieved: 28 January 2011.
Cooper, Tom
"Iraqi Air-to-Air Victories since 1967."
ACIG, 25 August 2007. Retrieved: 28 January 2011.
* Known Iraqi MiG-23 fighter pilot was Captain Omar Goben. He shot down at least one F-5E and one F-4E with a MiG-23, and two F-5Es and one F-4E with a MiG-21. According to researcher Tom Cooper, Iranian F-14s caused exceptionally heavy losses to the MiG-23s (most of them bombers, model MiG-23BN) early in the war, much to the disappointment of the Iraqi Air Force, which thought that the Soviet fighter would be a match for the Tomcat. During the Iran-Iraq War at least 58 MiG-23s are claimed to be shot down by F-14s (15 of these are confirmed according to Cooper),Cooper and Bishop 2004, pp. 85–88. and 20 MiG-23s are claimed by F-4s (16 confirmed according to Cooper). According to official Iraqi data only 29 MiG-23s were lost during the entire war (between 20 and 28 of them were shot down by AAA, enemy fighters or friendly fire). * Iraqi MiG-23MS/MFs (fighters) were used in the first half of the war scoring no less than 8 kills while suffering 2 MiG-23MS and 4 MiG-23MF losses. * MiG-23MLs (fighters) were used in the second half of the war. They possibly scored 7 kills (including 3 F-14) while possibly suffering 3 losses. * MiG-23BNs (ground-attack variant) were successfully used against ground targets. On 22 September 1980, BNs were used in first combat sorties against Iran. Two F-4 Phantoms were destroyed at Mehrabad Air Base in BNs attack. However up to 22 BNs were downed by Iranian interceptors during the war. According to other sources, 16 BNs were lost during war, 13 of them in combat. * According to Iranian sources, four MiG-23BNs were shot down by F-14s on 29 October 1980, but the victory was not confirmed. ;Kuwait Invasion and Gulf War (1990–1991) On 2 August 1990, the Iraqi Air Force supported the invasion of Kuwait with MiG-23BN and Su-22 aircraft as the main strike assets. A number of Iraqi aircraft and helicopters were claimed shot down by Kuwaiti air defense MIM-23 Hawk SAM sites, among them a MiG-23BN. Iraqi documents captured after the invasion of Iraq revealed that they possessed 127 MiG-23s, included 38 MiG-23BNs and 21 MiG-23 trainers, at the start of Operation Desert Storm. During the Gulf War, the United States Air Force reported downing eight Iraqi MiG-23s with F-15s. Iraqi documents confirm the total destruction of 43 MiG-23s from all causes, with another 10 damaged and 12 others fleeing to Iran. This left Iraq with just 63 MiG-23s after the war, including 18 Mig-23BNs and 12 trainers. The United States stated that the losses of the F-16Cs were caused by 2K12 Kub and S-125 Neva/Pechora surface-to-air missiles rather than enemy aircraft. Also, no Tornado loss is attributed to enemy aircraft as per the Royal Air Force and the Italian Air Force. ;No Fly Zone and invasion of Iraq (1991–2003) On 17 January 1993, a USAF F-16C destroyed an Iraqi MiG-23 with an AMRAAM missile. On 9 September 1999, a lone MiG-23 crossed the no-fly zone heading towards a flight of F-14s. One F-14 fired an AIM-54 Phoenix at the MiG but missed and the MiG headed back north. In 2003, during Operation Iraqi Freedom, the entire Iraqi Air Force remained grounded with several airframes found by US and allied forces around the Iraqi air bases in derelict condition after the invasion. The invasion marked the end of Iraqi service for the MiG-23.

Cuba

;Cuba in Angola Cuban MiG-23MLs and South African Mirage F1 pilots had several encounters during the Cuban intervention in Angola, one of which resulted in severe damage to a Mirage F1. On 27 September 1987, during Operation Moduler, two MiG-23 pilots surprised a pair of Mirages and fired missiles: Alberto Ley Rivas engaged a Mirage flown by Capt Arthur Douglas Piercy with a pair of R-23Rs (some sources say a R-60), while the other Cuban pilot fired a single R-60 at a Mirage flown by Captain Carlo Gagiano. Although the missiles homed on the Mirages, only one R-23R exploded close enough to cause damage to the landing hydraulics of Capt Piercy's Mirage (and, according to some accounts, the aircraft's drag chute). The damage likely contributed to the Mirage veering off the runway on landing, after which the nose gear collapsed. The nose hit the ground so hard that Piercy's ejection seat fired. As a result of this ground level ejection, Piercy was paralyzed. The aircraft was written off, but a large portion of the airframe and components were used to repair another accident damaged Mirage F-1 and return it to service. In total, the Cubans claimed 6 air victories with the MiG-23 (1 destroyed, 1 damaged and 4 were unconfirmed). FAPLA MiG-23s outclassed SAAF Mirage F-1CZ and F-1AZ fighters in terms of power/acceleration, radar/avionics capabilities, and air-to-air weapons. The MiG-23's R-23 and R-60 missiles gave FAPLA pilots the ability to engage SAAF aircraft from most aspects. The SAAF, hobbled by an international arms embargo, was forced to carry an obsolescent version of the French Matra R.550 Magic missile or early-generation V-3 Kukri missiles, which had limited range and performance relative to the R-60 and R-23. Despite these limitations, SAAF pilots were able to vector within the firing envelope and fire AAMs at MiG-23s (gun camera shots evidence this). The missiles either missed or exploded ineffectually behind in the tail plume rather than homing on the hot airframe. UNITA rebels, opposing Cuban/MPLA forces, shot down a number of MiG-23s with American-supplied FIM-92 Stinger MANPADS missiles. South African ground forces shot down a MiG-23, which was prosecuting a raid on the Calueque Dam, by using the ''Ystervark'' (porcupine) 20 mm AA gun.

Libya

Libya received a total of 54 MiG-23MS and MiG-23Us between 1974 and 1976, followed by a similar number of MiG-23BNs. Many of these were immediately put into storage, but at least 20 MiG-23MSs and MiG-23UBs entered service with the 1023rd Squadron and 1124th Squadron. One Libyan MiG-23MS was shot down by an Egyptian MiG-21 fighter during and immediately after the Libyan–Egyptian War in 1977 while supporting a strike on the airfield at Mersa-Matruh, forcing the remaining MiG to abort the mission. In one skirmish in 1979, two LARAF MiG-23MS engaged two EAF MiG-21MF which had been upgraded to carry Western air-to-air missiles such as the AIM-9P3 Sidewinder. The Libyan pilots made the mistake of trying to outmaneuver the more nimble Egyptian MiG-21s, and one MiG-23MS was shot down by Maj. Sal Mohammad with an AIM-9P3 Sidewinder missile, while the other used its superior speed to escape. On 18 July 1980, the wreckage of an LARAF MiG-23MS was found on the northern side of Mount Sila, in the middle of the Italian province of Calabria. The deceased pilot, Captain Ezzedin Fadhel Khalil, was found still strapped to his ejection seat. Libyan MiG-23s were employed during the Chadian–Libyan conflict performing different roles in the 1980s. On 5 January 1987, a Libyan MiG-23 was shot down and few months later, on 5 September 1987, Chadian forces performed a land raid against Maaten al-Sarra Air Base in Libya, destroying several Libyan aircraft on the ground, among them, three MiG-23s. Two Libyan MiG-23MS fighters were shot down by U.S. Navy F-14s in the Second Gulf of Sidra incident in 1989. ;Libyan Civil War In the 2011 Libyan civil war, Libyan Air Force MiG-23s were used to bomb rebel positions. On 15 March 2011, a rebel website reported that opposition forces started using a captured MiG-23 and a helicopter to sink 2 loyalist ships and bomb some tank positions. On 19 March 2011, a MiG-23BN of the Free Libyan Air Force was shot down over Benghazi by its own air defenses, who mistook it for a loyalist aircraft. The pilot was killed after he ejected too late."Benghazi 'bombarded by pro-Gaddafi forces'."
BBC News, 20 March 2011.
On 26 March 2011, five MiG-23s together with two Mi-35 helicopters were destroyed by the French Air Force while parked at Misrata airport, early reports misidentified the fixed wing aircraft as G-2 Galebs. On 9 April, a rebel MiG-23 was intercepted over Benghazi by NATO aircraft and escorted back to its base for violating the UN no-fly zone.Leyne, Jon
"Libya: Fierce battle for second day in Ajdabiya."
BBC, 10 April 2011. Retrieved: 12 April 2011.
A limited number of MiG-23's which survived the 2011 Libyan civil war and NATO bombings were involved in air strikes between the opposing Libyan House of Representatives and the rival General National Congress during the Second Libyan Civil War with both parties controlling a limited number of aircraft. On 23 March 2015, a New General National Congress operated MiG-23UB was shot down while bombing Al Watiya airbase, controlled by the Libyan House of Representative probably with an Igla-S MANPADS. Both pilots were killed. At the beginning of 2016, Libyan House of Representatives forces controlled three airworthy MiG-23s among other aircraft, two MiG-23MLA and one MiG-23UB. They were all lost in three separate occasions with a first MiG-23MLA, serial 6472, lost near Benina airbase on 4 January, after an airstrike, the second MiG-23MLA, serial 6132, lost on 8 February while conducting air strikes against Islamic State near Derna and the MiG-23UB, serial 7834, lost on 12 February 2016 while operating west of Benghazi, claimed shot down by the Islamic State with the official government attributing the loss to anti aircraft artillery. In all the occasions the aircrews ejected while the cause of the first two crashes remained debated between hostile fire and mechanical causes. On 28 February 2016, a MiG-23MLA serial 6453 was restored to flying status after several years, becoming the only MiG-23 in service with the Libyan Air Force as of March 2016, performing missions against enemy positions and vehicles since March 2016. In the following weeks, both the Libyan Air Force and the opposing Libyan Dawn Air Force, restored a number of MiG-23BN, MiG-23ML and MiG-23UB to flying status and they were recorded while flying over Libyan skyes and striking enemy positions. On 6 December 2019, a Libyan National Army (LNA) MiG-23MLD was shot down by forces loyal to the Government of National Accord (GNA). In the ongoing Libyan Civil War both parties are pushing back to service stored airframes after repairs with foreign assistance. The jet, serial 26144, was restored using the wings of two different airframes and became flyable again in August 2019, after around 20 years of storage.https://www.africanmilitaryblog.com/2019/08/libya-frankenstein-mig-23-flogger-fighter-jet-take-flight The jet was hit over the Yarmouk frontline in southern Tripoli and crashed in Al Zawiya city and the pilot, Amer Jagem was detained after ejecting. A video emerged showing the aircraft diving for attack with soldiers on the ground firing a Strela-2M MANPADS in response. The LNA reported they lost a MiG-23 due to technical fault, denying it crashed due to enemy fire.

Egypt

Egypt became one of the first export customers when in 1974 bought eight MiG-23MS interceptors, eight MiG-23BN strikers and four MIG-23U trainers, concentrating them into a single regiment based at Mersa Matruh. By 1975 all Egyptian MiG-23s had been withdrawn from active duty and placed in storage due to the Egyptian foreign policy shifting towards the West and thus losing USSR support. In 1978 China purchased two MiG-23MS interceptors, two MiG-23BNs, two MiG-23Us, ten MiG-21MFs, and ten KSR-2 (AS-5 Kelt) air-to-surface missiles in exchange for spare parts and technical support for the Egyptian fleet of Soviet-supplied MiG-17 Frescos and MiG-21s. The Chinese used the aircraft as the basis for their J-9 project, which never ventured beyond the research phase. Some time later the remaining six MiG-23MS examples and six MiG-23BNs, as well as 16 MiG-21MFs, two Sukhoi Su-20 Fitters, two MiG-21Us, two Mil Mi-8 Hips and ten KSR-2 were purchased for the Foreign Technology Division, a special department of the USAF, responsible for evaluating adversary technologies. These were exchanged for weapons and spares support, including AIM-9J/P Sidewinder missiles, which were installed on remaining Egyptian MiG-21s.

Ethiopia

MiG-23s supplied by the Soviet Union to Mengistu Haile Mariam's Derg were heavily used by the Ethiopian Air Force against the array of rebel guerillas fighting the government during the Ethiopian Civil War. According to a 1990 Human Rights Watch report, the attacks, often using napalm or phosphorus and cluster munitions, were not only aimed at the rebels, but against civilian populations (in both Eritrea and Ethiopia) and humanitarian convoys in a deliberate fashion. Ethiopian MiG-23s were used in ground attack and strike missions during the border war with Eritrea from May 1998 to June 2000, even striking targets at the airport in the Eritrean capital city, Asmara on several occasions. Three Ethiopian MiG-23BNs were claimed shot down by Eritrean MiG-29s. On 29 November 2020, an Ethiopian Air Force MiG-23 crashed during the Tigray conflict near Abiy Addi, 50 kilometers west of Mekelle. The pilot ejected and was captured by the Tigray People's Liberation Front who claimed they shot it down, showing the pilot with his Zsh-7 flying helmet (originally intended for Su-27 and MiG-29), a flight suit, a MiG-23 English manual and the crash site with charred metal parts.

India

;Kargil War (1999) On 26 May, the Indian forces started air strikes during the Kargil War. Flying from the Indian airfields of Srinagar, Avantipur and Adampur, MiG-23BN, joined the other Indian strike aircraft, MiG-21s, MiG-27s, Jaguars and Mirage 2000 in striking the enemy positions.

Variants



First-generation

;Ye-231:("Flogger-A") was the designation given to the prototype MiG-23 built for testing purposes. Although the experimental model featured the same basic design as later MiG-23/-27 models, it lacked the sawtooth leading edge common on later variants. It also shares design elements with the Sukhoi Su-24, although the Su-24 would go on to experience greater modification.Civil Airworthiness Certification: Former Military High-Performance Aircraft. (2013). Stickshaker Pubs. 2-20 ;MiG-23: ("Flogger-A") was a pre-production model which lacked weapon hardpoints but was armed with guns and featured the sawtooth leading edge of later MiG-23s. It also marked the divergence point of the MiG-23/-27 and Su-24 designs. ;MiG-23S: ("Flogger-A") was the initial production variant. An interim variant, it was externally similar to the prototype but as the Sapfir-23 had been delayed it was equipped with the RP-22SM Sapfir radar and lacked an IRST. The first MiG-23Ss were powered by an R-27F-300 turbojet with a dry thrust of and on afterburner; later version used the uprated R-27F2M-300 with a dry thrust of and on afterburner. :The first MiG-23S took flight on 21 May 1969, and from July 1969 to mid-1973 a total of 11 MiG-23Ss were involved in protracted testing by the Ministry of Aircraft Industry and the VVS. It was during this testing phase where a number of faults with the MiG-23 were discovered - including dangerous behavior at high AoA, propensity to spin in certain circumstances, and development of cracks in the joints between the center fuselage and wings - and several accidents occurred with the lost of life. Around 60 production-standard MiG-23Ss were built between 1969 and the early 1970s. However these only saw brief front-line service with the 4th TsBPiPLS and 979th IAP before the numerous unreliability issues forced their retirement. ;MiG-23: ("Flogger-A") was another interim variant which replaced the MiG-23S starting in late 1970; while known simply as the MiG-23, it was also called the MiG-23 Edition 1971. It was the first to feature the Sapfir-23 radar (albeit the unreliable Sapfir-23L model which lacked look-down/shoot-down) allowing it to fire the R-23R SARH missile, along with a TP-23 IRST and ASP-23D gunsight/HUD. A redesigned fuselage moved the tail surfaces back , added ribbed airbreaks, and inserted another fuel tank with capacity. The new wing design, known as Edition 2 wings, increased surface area by 20 percent to improved wing loading but resulted in a change in sweep settings; it also added a pronounced leading-edge dogtooth but removed the leading-edge slats, making them easier to manufacture but increasing the already dangerous control and stability issues. The MiG-23 Edition 1971 was powered by a R-27F2-300 turbojet rated at dry and with afterburners. :Around 80 MiG-23 Edition 1971s were manufactured in 1971. These briefly saw service with frontline VVS fighter regiments until eventually being assigned to a training role in 1978. ;MiG-23M: ("Flogger-B") The most produced variant of the first-generation 'Floggers,' the MiG-23M first flew in June 1972 and became the VVS' chief air superiority fighter, giving it a true look-down/shoot-down capability. While the first fighters were equipped with the Sapfir-23L, it was quickly succeeded by the improved Sapfir-23D (and in 1975 the Sapfir-23D-III), allowing the MiG-23M to carry a pair of R-23 missiles and R-60 missiles. Other updates to the electronics included the SAU-23A three-axis automatic flight control system/autopilot and Polyot-11-23 navigation system. An updated wing design, the definitive Edition 3 wing, retained the Edition 2's design but added leading-edge slats back to improve handling characteristics. The variant was powered by an uprated R-27 turbojet, the Tumansky R-29-300 (''izdeliye 55a''), which had a dry thrust of and with afterburners. Plumbed pylons were also introduced to allow the MiG-23M to carry 800-litre drop tanks when the wings were at full spread. :Production began at the Znamya Truda factory in 1972, and by 1974 it reached an impressive thirty-plus airframes a month, with peaks of up to forty a month. The first MiG-23Ms entered service with the 4th TsBPiPLS in 1973, soon followed by frontline VVS regiments stationed in East Germany; by the mid-1970s a small number of PVO regiments had also converted to the MiG-23M. However, problems with the airframe's structural elements and wing sweep mechanism failures resulted in a self-imposed 5-G restriction until 1977, when quality controls and strengthening measures addressed the problem and allowed for MiG-23M squadrons to conduct basic fighter maneuvers. Around 1,300 MiG-23Ms were produced for the VVS and PVO from 1972 to 1978. ;MiG-23MF: ("Flogger-B") This was an export derivative of the MiG-23M produced from 1978 to 1983 at Znamya Truda. One version (''izdeliye 2A'' or 23-11A), intended for sale to the Warsaw Pact, was practically the same as the MiG-23M with small differences in communication and IFF equipment. The other (''izdeliya 2B'' or 23-11B) was designed for sale for certain Third World client states. Like the 23-11A it featured the Sapfir-23D-III radar (redesignated Sapfir-23E), but lacked electronic counter-countermeasure (ECCM) features and had lower overall performance. Their communication equipment was also less powerful, with the Lasour-SMA datalink removed from some aircraft. Until 1981, these were delivered to customers with the R-13M missile instead of the R-60. ;MiG-23MS: ("Flogger-E") Another export variant, the MiG-23MS was a downgrade version of the MiG-23M designed for Third World customers who couldn't be trusted with the advanced technology of the MiG-23MF. While utilizing the same airframe and engine as the MiG-23M, the MiG-23MS was equipped with the same weapons and equipment as the MiG-21S/SM. A downgraded export version of the RP-22SM radar gave the MiG-23MS it's distinctively short nose radome, while the undernose IRST was removed. The only missiles it was capable of firing were up to four R-3S and R-3R air-to-air missiles, though the improved R-13M was added later. This variant was produced at Znamya Truda between 1973 to 1978, with fifty-four sent to Syria, eighteen to Iraq, eight to Egypt, fifty-four to Libya and an unknown number to Algeria. Egypt handed over several of their MiG-23MSs to China and the United States for technical evaluation. ;MiG-23MP: ("Flogger-E") Virtually identical to the MiG-23MS, the only difference was that the MiG-23MP added a dielectric head above the pylon, a feature associated with ground-attack versions. A possible developmental prototype, very few were produced and none were exported.Civil Airworthiness Certification: Former Military High-Performance Aircraft. (2013). Stickshaker Pubs. 2-22 ;MiG-23U: ("Flogger-C") The MiG-23U was a twin-seat training variant based on the MiG-23S, first appearing six months after the single-seater's introduction. Its only major design difference was the addition of a second cockpit where the equipment bay was located, necessitating its movement into the redesigned nose. It retained the MiG-23S' GSh-23L gun with 200 rounds and could carry up to of bombs. Equipped with the S-21 weapon control system centered on the Sapfir-21M radar, the MiG-23U could fire the R-3S and R-13M missiles. Also like the MiG-23 Edition 1971 and MiG-23M, a fourth fuel tank was added with a capacity of 470 litres.Mladenov (2016), Ch. 3 - ''Two-Seat Floggers'' Production of the MiG-23U began at Irkutsk in 1971 and eventually converted to the MiG-23UB.Civil Airworthiness Certification: Former Military High-Performance Aircraft. (2013). Stickshaker Pubs. 2-22 ;MiG-23UB: ("Flogger-C") Another two-seat trainer, the MiG-23UB made its maiden flight on 10 April 1970, with production starting later that year at the Irkutsk Aviation Plant. It was equipped with the SAU-23UB flight control system and Polyot-11-23 navigation system, consisting of a RSBN-6S tactical aid to navigation, a SKV-2N2 reference gyro and a DV-30 and DV-10 air data system. While early production aircraft did feature the Sapfir-21M radar, it was soon replaced with ballast blocks under a conical metal fairing. Additionally, starting in 1971 production MiG-23UBs received the Edition 3 wing, and from 1979 onward those delivered to MiG-23M/ML regiments received the SOUA limiter to constrain AoA to within 28 degrees. Production of the MiG-23UB for the VVS and PVO continued until 1978, and until 1985 for export customers. More than 1,000 MiG-23UBs were produced, with 760 of these for the VVS and PVO.

Second-generation

;MiG-23P: ("Flogger-G") This was a specialized air-defense interceptor variant developed for the PVO Strany as an interim low-cost stopgap, replacing the Su-9/Su-11 and MiG-19P/PM still in service. The MiG-23P (P - ''Perekhvatchik'' or interceptor) had the same airframe and powerplant as the MiG-23ML, but its avionics suite was improved to meet PVO requirements and mission profiles. Its radar was the improved Sapfir-23P (N006), which could be used in conjunction with the ASP-23P gunsight/HUD (later replaced with the improved ASP-23ML-P) for better look-down/shoot-down capabilities to counter increasing low-level threats like F-111s.Mladenov (2016), Ch. 3 - ''The MiG-23P Specialised Interceptor'' The IRST however was removed.Civil Airworthiness Certification: Former Military High-Performance Aircraft. (2013). Stickshaker Pubs. 2-23 The SAU-23P autopilot included a new digital computer which, operating in conjunction with the Lasur-M datalink, enabled ground-controlled interception (GCI) ground stations to steer the aircraft towards the target; in such an intercept, all the pilot had to do was control the engine and use the weapons. The MiG-23P was the most numerous PVO interceptor in the 1980s - around 500 manufactured between 1978 and 1981 - but was never exported. It also endured after the break-up of the Soviet Union, with the last MiG-23P units operating until 1998. Interestingly, in mock BVR air combat the MiG-23P when flown by experienced pilots proved to be equal or even better than the Su-27.Mladenov (2016), Ch. 3 - ''The MiG-23P Specialised Interceptor'' ;MiG-23''bis'': ("Flogger-G") Similar to the MiG-23P except the IRST was restored and the cumbersome radar scope replaced with a new head-up display (HUD). ;MiG-23ML ("Flogger-G"): The early "Flogger" variants had a number of design shortcomings, including airframe strength and reliability, engine performance, maneuverability and radar performance. A considerable redesign of the airframe was conducted, resulting in the MiG-23ML (L - ''Lyogkiy'' or lightweight), which was given the NATO designation "Flogger-G". Empty weight was reduced by removing the No. 4 fuselage fuel tank. Aerodynamics were refined for less drag, with the dorsal fin extension removed. The lighter weight of the airframe and a redesign of the main undercarriage units resulted in a different sit on the ground, with the aircraft's nose at a lower attitude compared to the nose-high appearance of earlier variants. Structural weaknesses, in particular the wing pivot mechanism, were strengthened so that the airframe was now rated for a G-limit of 8.5 at speeds below Mach 0.85 and 7.5-G at faster speeds. This also allowed the angle of attack (AoA) limiter to be set to 20-22° with the wings fully swept back, and 28-30° otherwise.Mladenov (2016), Ch. 3 - ''The Refined MiG-23ML'' :A new engine model, the R-35F-300, now provided a maximum dry thrust of , and with afterburner. This led to a considerably improved thrust-to-weight ratio of 0.83 (versus 0.77 for the MiG-23M), though in real-world conditions the ratio would be lower due to engine 'detuning', and a lower specific fuel consumption of 1.96 kg/kgf.h at maximum afterburn (versus 2.09 in the earlier R-27F2M-300). After initial issues of reliability, the time between overhauls was also extended to 450 hours, though like earlier engines it was limited to only ten hours at full military power or afterburner. :The avionics set was considerably improved as well. The S-23ML standard included Sapfir-23ML radar and TP-23ML IRST. The Polyot-21-23 navigation sutie, Lasour-23SML datalink, SAU-23AM flight control system, and RV-5R Reper-M radar altimeter were all improvements on previous systems. Thanks to the new SUV-2ML weapons system, the MiG-23ML could carry both types of R-23 BVR missiles, and the underwing pylons could accommodate UPK-23-250 23mm gun pods. :Overall the MiG-23ML's combat effectiveness was about 20 per cent better than the MiG-23M according to Mikoyan OKB. Instantaneous turn rate was 16.7° per second at a corner speed of and 27° AoA; average rate of turn was 14.1° per second. Completing a 360° turn at an altitude of took 27 seconds at an average of 6.5-G, with an entry speed of and final speed of . At the same altitude, accelerating from to at full afterburn took 12 seconds, while the rate of climb was , though this fell off as altitude increased. In total, the time it took a MiG-23ML to take off and reach while accelerating to Mach 2.1 on full afterburner was 4.3 minutes. :The MiG-23ML prototype first took flight on 21 January 1975 and quickly entered mass production later that same year, though export customers continued to receive the MiG-23MF for another seven years. More than 1,100 MiG-23MLs (and its derivatives including the MiG-23MLA) were built for Soviet and export users between 1978 and 1983. ;MiG-23MLA: ("Flogger-G") The later production variant of the "ML" was designated the "MiG-23MLA". The fighter first flew in 1977, with mass production beginning in 1978 and sales to foreign customers starting in 1981. Externally, the "MLA" was identical to "ML". Internally, the 'MLA' had an improved Sapfir-23MLA (N003) radar with better range, reliability and ECM resistance, and a frequency spacing feature which made co-operative group search operations possible as the radars would now not jam each other. It also had a new ASP-17ML HUD/gunsight, and starting in 1981 the capability to fire improved Vympel R-24R/T missiles. A new 26ShI IRST was included, which had a maximum detection range of for a high-altitude fighter-sized target operating at full power, or for a bomber-sized target. However its field of scanning was restricted compared to the radar: only 60° in azimuth and 15° in elevation. As with the MiG-23MF, there were two different MiG-23ML sub-variants for export: the first version was sold to Warsaw Pact countries and was very similar to Soviet aircraft. The second variant had downgraded radar and it was sold to Third World allies. ;MiG-23MLD: ("Flogger-K") The MiG-23MLD was the ultimate fighter variant of the MiG-23. The main focus of the upgrade was to improve maneuverability, especially during high AoA, which was identified as the MiG-23M/ML's chief shortcoming. The pitot boom was equipped with vortex generators, and the wing's notched leading edge roots were 'saw-toothed' to act as vortex generators as well. The flight-control system incorporated the SOS-3-4 synthetic stick-stop device/signals limiter being used on the MiG-29 to improve handling and safety in high-AoA maneuvers. A strengthening of the wing pivot allowed the addition of a fourth wing sweep position of 33°, which was intended to reduce turn radius and allow for rapid deceleration during dogfights. However, with the wings at the 33° position, the MiG-23MLD was much more difficult to handle and suffered from poor acceleration. Moving the wings to this position was primarily reserved for experienced MiG-23 pilots, while combat manuals continued to emphasize the 45° position.Mladenov (2016), Ch. 3 - ''MiG-23MLD - The Ultimate Fighter Flogger'' :Significant improvements were made in avionics, with the incorporation of the Sapfir-23MLA-II (N008) radar which featured greater range, reliability, ECM resistance and improved modes for look-down/shoot-down over rough terrain. The radar also featured a close-in fighting mode with vertical-scan capability covering a narrow sector in front of the fighter. Against a bomber-sized target operating at medium to high altitudes, the Sapfire-23MLA-II had a maximum detection range of . Other improvements included the SPO-15L Beryoza radar warning receiver, A-321 Klystron digital tactical radio navigation/automatic landing system, SAU-23-18 automatic flight control system, and SARP-12-24 crash-resistant flight recorder. Survivability was improved with a pair of six-round downward-firing chaff/flare dispensers mounted in the underfuselage centerline pylon, complemented by the thirty-round upward-firing BVP-50-60 chaff/flare dispenser. :No new-build "MLD" aircraft were delivered to the VVS, as the more advanced MiG-29 was about to enter production. Instead, all Soviet "MLD"s were former "ML/MLA" aircraft modified to "MLD" standard, with 560 examples being converted at three VVS maintenance facilities in Kubinka, Chuhuiv and Lviv from May 1982 to May 1985. As with earlier MiG-23 versions, two distinct export variants were offered. Unlike Soviet examples, these were new-build aircraft, though they lacked the aerodynamic refinements of Soviet "MLD"s; 16 examples were delivered to Bulgaria, and 50 to Syria between 1982 and 1984. These were the last single-seat MiG-23 fighters made.

Ground-attack variants

;MiG-23B: ("Flogger-F") Created to meet the need for a new fighter-bomber, the MiG-23B was similar to the MiG-23S but with a redesigned forward fuselage and a dielectric head just above the pylon. In the flat-bottomed, tapered-down nose was a PrNK Sokol-23 ground attack sight system in place of the radar. The system included an analogue computer, a laser rangefinder and a PBK-3 bomb sight. The navigation suite and autopilot were updated to provide more accurate bombing, while the pylons were strengthened to increase the maximum bomb payload to 3,000kg. To improve the fighter's survivability, the Flogger-F was fitted with an electronic warfare (EW) suite, and an inert gas system was placed in the fuel tanks to prevent fires. The pilot's survivability and visibility was also enhanced by raising their seat and armoring the cockpit windscreen. Instead of the R-29 engine, the MiG-23B was fitted with the Lyulka AL-21 turbojet.Civil Airworthiness Certification. 2-25 :The first prototype of the MiG-23B, "32-34", flew on 20 August 1970. While it was fitted with same wing design as the MiG-23S, all subsequent models had the improved Edition 2 design. However, because the AL-21 was needed for the Sukhoi Su-17 and Su-24, only three prototypes and 24 production aircraft of the MiG-23B were produced between 1971 to 1972. Restrictions on the AL-21 also prevented the MiG-23B from being exported to foreign customers. ;MiG-23BK: ("Flogger-H") An export variant reserved for Warsaw Pact countries. In addition to the PrNK-23 system, additional radar warning receivers were mounted on the intaks.Civil Airworthiness Certification. 2-26 ;MiG-23BN: ("Flogger-H") An upgraded version of the MiG-23B, the MiG-23BN differed in that it was fitted with the Edition 3 wings and R-29 engine of contemporary fighter variants, along with minor updates in electronics and equipment. The other major difference was the removal of the dielectric head found on the MiG-23B. Produced from 1973 to 1985, a total of 624 MiG-23BNs were built, although only a small number served in VVS units with the rest exported. A downgraded version intended for Third World customers proved to be fairly popular and effective. The last MiG-23BN in Indian service flew on 6 March 2009, flown by Wing Commander Tapas Ranjan Sahu of the 221 Squadron (Variants). ;MiG-23BM: ("Flogger-D") An upgrade of the MiG-23BK, the MiG-23BM replaced the original PrNK-23 with the PrNK-23M and the analog computer with a digital computer. Introduced into service as the MiG-27. ;MiG-23BM experimental aircraft: ("Flogger-D") The predecessor to the MiG-27, this experimental variant differed from the standard MiG-23BM in that its dielectric heads were moved from the pylons to directly on the wing roots. ;MiG-27: (NATO: "Flogger-D") Introduced in 1975, simplified ground-attack version with simple pitot air intakes, no radar and a simplified engine with two position afterburner nozzle.

Proposed variants and upgrades

;MiG-23R: A proposed reconnaissance variant which was never finished.Civil Airworthiness Certification. 2-27 ;MiG-23MLGD: A subvariant of the MiG-23MLD, featuring new radar, electronic warfare equipment, and helmet-mounted display, partly the same as the MiG-29. ;MiG-23K: A carrier-borne fighter variant based on the MiG-23ML, it was cancelled after the cancellation and subsequent redesign of the Soviet aircraft carrier project. ;MiG-23A: A multi-role variant based on the MiG-23K, it was planned for three sub-variants: the MiG-23AI (fighter), MiG-23AB (ground-attack), and MiG-23AR (reconnaissance). The variant was cancelled for the same reason as the MiG-23K.Civil Airworthiness Certification. 2-29 ;MiG-23MLK: A proposed variant which would be fitted with either two new R-33 engines or one R-100 engine. ;MiG-23MD: A modification of the MiG-23M which would have been equipped with a Saphir-23MLA-2 radar. ;MiG-23ML-1: A variant which would've been armed with the new R-146 missile and one of several engine configurations: a single R-100, an R-69F, or twin R-33 engines. ;MiG-23-98: A proposed series of upgrades to the MiG-23 offered by Mikoyan in the late 1990s. At a cost of around $1 million USD, it included new radar, self-defense suite and avionics, along with improved cockpit ergonomics, helmet-mounted display, and the ability to fire Vympel R-27 (NATO: AA-10 "Alamo") and Vympel R-77 (NATO: AA-12 "Adder") missiles. For a lesser price, the existing Sapfir-23 would be improved along with newer missiles and other avionics. Airframe life extension was offered as well. ;MiG-23-98-2: An export upgrade offered to Angolan MiG-23MLss, improving the radar so they could fire new types of air-to-air and air-to-ground weapons. ;MiG-23LL: (flying laboratory) These MiG-23s were constructed to test a new in-cockpit warning system which used a female voice to warn pilots about various flight parameters. A female voice was chosen specifically to provide a distinction from ground communication, which in Soviet service was virtually always male.

Operators



Current operators

;: National Air Force of Angola; 22 MiG-23ML/UB/MLD in service. ;: Cuban Air Force; 24 MiG-23ML/MF/BN/UB in service. One crashed in February 2019. ;: DR Congo Air Force; 2 MiG-23s, One single-seat and one twin-seat. ;: Ethiopian Air Force; 10 MiG-23BN/UBs in service for ground attack role. The interceptor variant, MIG-23ML, was withdrawn from service. ;: Military of Kazakhstan. 2 units of training Mig-23UB, as of 2018. ;: Libyan Air Force; initially at least five MiG-23ML/UB in service, split among different factions. Four lost. Only one in service with the New General National Congress, while others (e.g. serial 453) may have been made airworthy by both factions. ;: North Korean Air Force; 56 MiG-23ML/UBs in service ;: Sudanese Air Force; 3 MiG-23MS/UBs in service. Four were refurbished locally in 2016, after nearly 20 years in storage. One lost during testing. ;: Syrian Air Force; 90 MiG-23MS/MF/ML/MLD/BN/UB airframes before the Syrian Civil War. ;: Air Force of Zimbabwe; given by Libya.


Former operators


; : Afghan Air Force. MiG-23BN/UBs may have served with the Afghan Air Force from 1984. It is unclear whether these were merely Soviet aircraft wearing Afghan colors. ; : Algerian Air Force. First 40 arrived in 1979. ; : Belarus Air Force. ; : Bulgarian Air Force. A total of 90 MiG-23s served the Bulgarian Air Force from 1976 to their withdrawal from service in 2004. The exact count is: 33 MiG-23BN, 12 MiG-23MF, 1 MiG-23ML, 8 MiG-23MLA, 21 MiG-23MLD and 15 MiG-23UB. ;: Cote d'Ivoire Air Force: ; : Czech Air Force. The MiGs were retired in 1994 (BN, MF version) and 1998 (ML, UB variant). ; : Czechoslovakian Air Force. MiG-23s were transferred to the Czech Republic. ; : East German Air Force; transferred to (West) German Air Force. The German Air Force gave two MiG-23s to the United States Air Force and one to a museum in Florida, the others were given away to others states or scrapped. ; : Egyptian Air Force. Used until Egypt turned towards Western Governments. Six MiG-23BN/MS/Us were sent to China in exchange for military hardware; China used them to reverse engineer the MiG-23 as the Q-6 but since the Chinese could not reverse engineer the R-29 and build a reliable turbofan, the only MiG-23 elements that were used ended in the J-8II. At least eight were transferred to USA for evaluation. ; : German Air Force; In 1990 the West German Air Force inherited 18 MiG-23BNs, 9 MiG-23MFs, 28 MiG-23MLs, 8 MiG-23UBs from East Germany. ; : Hungarian Air Force; 16 MiG-23s served and were withdrawn in 1997; the exact count is: 12 MiG-23MFs and four MiG-23 UBs (one of them was purchased in 1990 from the Soviet Air Force). ;: Indian Air Force. The MiG-23BN ground attack aircraft was phased out on 6 March 2009 and the MiG-23MF air defence interceptor phased out in 2007. 14 MiG 23UB trainers in service according to "World Air Forces 2020" ; : 12 Mig-23s flown over from Iraq in 1991 in storage. ;: Iraqi Air Force. Used until the fall of Saddam Hussein ;: Libyan Air Force; had 130 MiG-23MS/ML/BN/UBs in service (most in storage) prior to the 2011 Libyan civil war. What remains has been passed on to the successor government. ; : Polish Air Force. A total of 36 MiG-23MF single-seaters and six MiG-23UB trainers were delivered to the Polish Air Force between 1979 and 1982. The last of them were withdrawn in September 1999. During the period four planes were lost in accidents. ;: Namibian Air Force; had two MiG-23 aircraft in service. ; : Romanian Air Force. A total of 46 MiG-23 served from 1979 until 2001 and were withdrawn in 2003; the exact count is: 36 MiG-23MF and 10 MiG-23 UB. ; : Russian Air Force. Approximately 500, all in reserve. ;: Somali Air Force; ; : Military of Turkmenistan. ; : Passed on to successor states. * Soviet Air Force * Soviet Anti-Air Defence ;: Sri Lanka Air Force; one MiG-23UB trainer used only for training purposes for their MiG-27 fleet ; : Uganda People's Defence Force ; : Ukrainian Air Force ; : Military of Uzbekistan ; : Military of Zambia.

Evaluation only users

; : * MiG-23s were obtained from Egypt, and an attempt to incorporate its variable wing design into their Nanchang Q-6. The program did not go ahead and the Q-6 was not built, but some features from the MiG-23 features were incorporated into the J-8II. China currently displays the MiG-23 in several air museums. ; : * One ex-Syrian MiG-23 flown by a defecting pilot to Israel. ; : * Samples obtained from Egypt and were mostly stationed in Nellis Air Force Base. The U.S. Air Force operated a small number of MiG-23s, officially designated YF-113, as both test and evaluation aircraft and in an aggressor role for fighter pilot training, from 1977 through 1988 in a program codenamed "Constant Peg". ; Yugoslavia: * Some ex-Iraqi MiG-23s have been used by Flight Test Center (VOC) in the early 1990s.

Civilian operators

; : According to the FAA there are 11 privately owned MiG-23s in the U.S."MiG-23."
U.S. FAA – Registry of Aircraft. Retrieved: 28 January 2011.
* Two ex-Czech aircraft, N51734 and N5106E, are registered for civilian use in the United States and are based at New Castle Airport in Wilmington, Delaware. * An ex-Bulgarian VVS aircraft, N923UB, is operational and on display at the Cold War Air Museum near Dallas, Texas."Mig-23."
Cold War Air Museum. Retrieved: 28 January 2011.


Accidents and incidents

* * * *

Aircraft on display



Specifications (MiG-23MLD)



See also

* 1989 Belgian MiG-23 crash

References



Sources





Bibliography

* * * * * * * * * * * * * * * * * * *

External links


MiG-23 on FAS.org



MiG-23 Flogger at Global Aircraft


* ttp://www.airwar.ru/history/locwar/bv/migs/mig23.html МиГ-23 против F-15 и F-16
МиГ-23 на Ближнем Востоке








{{Authority control MiG-023 Category:1960s Soviet fighter aircraft Category:Variable-sweep-wing aircraft Category:Single-engined jet aircraft Category:High-wing aircraft Category:Aircraft first flown in 1967